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PREFACE

The objective of the work reported in this interim report
is to summarize measured and derived performance values of the
experimental Beacon Collision Avoidance System (BCAS) hardware
and software design. This BCAS concept is one of the several
design options available, and it was conceived by George Litchford,
who was awarded a sole source contract (Contract Number
DOT-TSC-1103) to implement an experimental system function
representative of the BCAS airborne and ground equipment. This
effort comprises the initial step of the FAA/SRDS-250 Separation
Assurance Branch toward development of the BCAS concept as a part
of a national collision avoidance system. It is envisioned that
the selection will be made by the FAA from one of the various
BCAS design options and that the selected design will be compatible
with the Air Traffic Control Radar Beacon System (ATCRBS) improve-
ment program and the Discrete Address Beacon System (DABS) devel-
opment.

The analysis and flight test evaluation program, under the
sponsorship of FAA/SRDS-250, was carried out by TSC and NAFEC.
The experimental BCAS equipment, developed and debugged by
Litchford Electronics, Inc., was turned over to the Government on
October 14, 1976. Extensive flight testing followed at the NAFEC
test area acquiring technical performance data under a variety of
parametric conditions. The test flights included flight encounters
between two BCAS-equipped FAA aircraft, and also flights against
a fixed target and against targets of opportunity. Flight tests
were completed on December 17, 1976.

This report includes evaluation data for all hardware
delivered in compliance with the contract DOT-TSC-1103, tasks 1 to
8 inclusive. After March 1977, the responsibility for the hard-
ware development contract was transferred to NAFEC and, in addi-
tion, the contract was also augmented by adding tasks 9, 10 and 11
to implement the better main beam lock and the automatic radar
selection and radar lock-on capability. The evaluation test
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results of the added three tasks are not included in this report.

A TSC in-house design analysis effort was to study various
BCAS design alternatives for the azimuth reference signal require-
ment and to perform studies on the BCAS critical characteristics.
Performance trade-offs among various design combinations are re-
ported. Critical design considerations, for example, synchronous
garble, possible configuration for generating false targets, and
an assessment of the potential interference with BCAS for the
. Joint Tactical Information Distribution System (JTIDS) are also
covered in this report. In addition, under separate TSC memor-
anda the following results of analysis and tests are reported.
Report number FAA-ARD-78-2, "Airborne Antenna Diversity Stﬁdy"
provides conclusions arrived at in analyzing airborne antenna
diversity requirement for general aviation aircraft; Report number
FAA-RD-78-34, "BACS Alternative Concepts for Determining Target
Positions" provides in-depth design trade-offs for range and
bearing calculations in the static case.

Analysis for the dynamic case and the covariance error analy-
sis are in progress now and to be reported in subsequent reports.

The following individuals and agencies are acknowledged for
their support to the BCAS program. Particular recognition goes to
David R. Israel, former FAA Associate Administrator for Engineering
and Development, for his .vision and support of this program
during initial design and development phases. Continuous support
was provided by Martin T. Pozesky, ARD-200, Thomas M. Johnston,
AEM-200, Richard F. Bock, ARD-251, John L Brennan, ARD-251, Owen
E. McIntire, ARD-251, Richard L. Bowers, ARD-251, and Peter V.
Hwoschinsky, AEM-20. Initially, the feasibility of the BCAS
concept was assessed by an FAA created ad hoc committee. To the
- members of this committee a special appreciation goes to James J.
Bagnall, Institute for Defense Analyses, Paul R. Drouilhet,
Lincoln Laboratory., Donald A. Jenkins, ARD-241, Edmund J. Koenke,
AEM-20, and Micheal Perie, ARD 102, the Committee Chairman.

The following TSC personnel are being recognized for their
contributions during all phases of the BCAS concept evaluation
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effort: James P. Andersen, TSC-50, Joseph M. Gutwein, TSC-531,
Robert M. Hubbard, NAFEC (formerly TSC-433) and Wilfred Brown,
MITRE, Bedford (formerly TSC-411). The efforts of Kentron Inter-
national are appreciated particularly those of Michael D.Menn and
Andrew Tobish. An acknowledgement goes to the efforts of the
contractor for building an experimental system, in particular to
J. Cole, R. Straub, and R. Galletta of MEGADATA. The flight test
plan was designed by HH Aerospace.

Approximately 100 flights and over 200 hours of flight time
were accomplished through the efforts of many different National
Aviation Facilities Experimental Center (NAFEC) personnel.

While it is impractical to list all, acknowledgement is given
herein to the following who supported the Systems and Equipment
Engineering Branch, ANA-140 and the Transportation System Center
(TSC) in the accomplishment of the project.

Data Processing Branch, ANA-550
Aviation Facilities Division, ANA-600
Surveillance Systems Branch, ANA-120
Plant Services Branch, ANA-530

Hardware Engineering Branch, ANA-730
Instrumentation and Calibration Branch,
Systems Test Branch, ANA-110

Eastern Region, ATC and AF personnel at
Philadelphia and NAFEC

The contributions of the individuals in these groups at NAFEC
are gratefully acknowledged. Due special recognition, however,
are the following personnel.

J. Bailey, ANA-640
Baraccini, ANA-140
Carr, ANA-140
Culbertson, Lockheed
Gadow, ANA-140
Heitz, ANA-120
Karsten, ANA-110
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Lasewicz, ANA-140
Lamprect, ANA-640

. Luciani, ANA-140
Madge, ANA-140
Riley, ANA-550
Scozzafava, ANA-140
Tait, ANA-550

+ Turnock, ANA-140
Wesighan, ANA-140.
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Special appreciation goes to the technical editor for this
report, Kathleen Morely.
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1, suMMaRrY anD CONCLUSIONS

1.1 GENERAL

Reported are analyses and flight test results of an air-
derived collision avoidance system concept feasibility study. A
possible application of the system is to assure safe separation
of aircraft in flight. The concept utilizes the Air Traffic Con-
trol Radar Beacon System (ATCRBS) signals in space: ground inter-
rogation signals and intercepted identity and altitude reply
messages that they ellicit. From these signals, aircraft sur-
veillance information is obtained and the threat possibility js
evaluated. Vertical and possibly horizontal maneuvers may be
provided from the Time-of-Arrival (TOA), Differential Azimuth
(DAZ), and Own Azimuth (0AZ) measurements from which the range and
bearing to an aircraft are computed. Only two experimental sys-
tems were evaluated; these represented one of the several design
options, but lacked an essential part of the BCAS final design,
the automatic ground radar selection and lock-on capability.1
Another deviation from the final design was in computing the
range and bearing to a target. These values were derived using
off-line computers from the inflight test data.

1.2 CONCLUSIONS

An extensive analytical effort was carried out in conjunction
with the flight test data analysis effort. The conclusion based
on the results of those analyses and measurements are as follows:

1. Overall Assessment of the BCAS Concept.

a. BCAS in a technically feasible concept;
There is no perceptable interference effect upon
ATCRBS surveillance;

Cc. BCAS measurements compare well with ground precision

tracking.

1NAFEC reports that the automatic radar selection and lock-on
capability has been verified under the contract No. DOT-TSC-1103,
Task 11.



Each design alternative analyzed has some bad
configurations to be recognized by the svstem
designers to avoid excessive errors and false
tracks; this includes the single-site system COn-
cept as well.

Measured Parameter Accuracy.

a.
b.
c.

TOA .15 usec (rms)
DAZ .3 degress (rms)
OAZ .25 degrees (rms)

Derived Parameter Accuracy for Good Configurations.

a.
b.
c.

Bearing (9) .3 degrees (rms)
Range to Target 300 feet (rms)
Range to Radar 3000 feet (rms)

Experimental BCAS Characteristics.

a.
b.

C.

Number of Targets Tracked 9

Number of Radars Locked 3

Range to SSR (max.) 100 nmi
SLS Receiver minus 90dbm
MB Receiver minus 65 dbm

Range to Target (max.) 8 nmi
Receiver minus 85 dbm

Probability of Detection -
All targets within the coverage region detected
by BCAS. For some aircraft, both ARTS and BCAS
formed multiple tracks, but not necessarily at the
same azimuth angle. No missed targets were
observed comparing BCAS against ARTS data.

Design Considerations.

a.

The proposed design option without radar azimuth re-
ference signals-may not provide sufficient target
bearing accuracy to give good tracks. Two aircraft
and two radars are the minimum configuration for
this system.



b. A design option requiring azimuth references
signals from all radars requires a minimum configura-
tion of two radars and one intruder aircraft to
determine the intruder position. Under some cir-
cumstances, this system may produce false tracks
which can not be distinguished from a true track,
except that in time ground radars will appear to
move relative to each other.

c. A mixed mode configuration, when only one radar site
is equipped with the azimuth reference signal, pro-
vides a measurement accuracy better than the no
azimuth reference system, but would not generate
false targets as in the previous case. Two targets
and two radars are required for a minimum configura-
tion.

1.3 FLIGHT TEST SUMMARY

In a total of fifty-four flights, two-hundred hours of
flight test data were recorded at the NAFEC. Some collected
data required additional testing, but in general most data
were satisfactory. The only tentative area is the evaluation of

the threat logic where only qualitative conclusions can be made.
These are:

1. Multiple targets which appeared in the Widened Azimuth
Window were not verified by ARTS data taken at the same time.
In the ARTS data, multiple targets for the same BCAS target
appeared at a different azimuth angle.

2. The threat detection logic appeared to be biassed to
reduce missed alarm; as a result, it generated some false
tracks.

1.4 ANALYSIS SUMMARY

Analyses have been performed for the static case and algo-
rithms have been developed to enable computation of range and
bearing to potential threat aircraft and to ground radars, using



passive-mode BCAS measurements. Only the static solutions are
presented. These are solutions based on the differential time of
arrival (TOA), differential azimuth (DAZ) and, where appropriate,
own azimuth (OAZ) measurements taken at one instant for the con-
figuration as it exists at that time.

The algorithms compute range and bearing to intruder aircraft
and radars on the basis of only the current measurements, making
use of no a priori knowledge of either the positions of the air-
craft or radars or of any previous measurements. For this reason,
the accuracies of the computed positions are likely to be worse
than those that would be obtained by dynamic tracking algorithms
which would smooth out the effects of measurement errors over time.

The solutions obtained are the solutions that best fit the
measurement data. Thus, their accuracy is the intrinsic accuracy
to within which the relative .positions of intruder aircraft and
locked radars can be determined from the measurements made with
the given accuracy at one point in time. Dynamic tracking
algorithms, when they are developed, may be expected to have'
better overall performance because they will have available
sequences of positions over a period of time and will be able to
smooth out measurement errors by effectively averaging over time.
The statistically computed accuracies should be suggestive of the
accuracies that the tracking algorithms should be able to achieve.

Algorithms for fully passive BCAS were developed and tested
in simulations. An algorithm for use in the mixed mode of opera-
tion using active interrogation and passive measurement for one
locked radar is presented for completeness. The error sensitivity
of the solution in this mode of operation has not been analyzed.

Three different modes of purely passive operation have been
simulated. These assume all radars equipped with azimuth refer-
ence signals, none so equipped, and only one radar so equipped
available at a given time.

It appears that when no radars are equipped with azimuth re-
ferences, the target bearing cannot be derived sufficiently



gccurately to give good target tracks. This conclusion should be
verified by dynamic simulation.

When all radars are equipped with azimuth reference signals,
the positions of single targets can be determined. The range of
configurations in which the solution is excessively error-
sensitive is smaller than for the other cases, but under some
circumstances the measurements lead to ambiguities in that two
distinct configurations can give rise to the same measurements.

When only one radar has azimuth reference signals, two target
aircraft must be observed to make calculations of position based
on passive measurements possible. The range of configurations in
which the solution is excessively sensitive to measurement error
is larger than when all radars have azimuth reference signals;
mulitple solutions do not occur.

In the good configurations of radars and aircraft, target
aircraft positions can be determined to within an RMS error of
less than 300 feet, assuming measurement accuracies like those
obtained by the experimental BCAS system. Radar positions can be
determined much less accurately. Errors range from somewhat less
than a mile to several miles in configurations with small differen-
tial azimuths. The system with two target aircraft is slightly
better.

It is judged that either system - assuming all radars equip-
ped with azimuth reference signals or only one radar within BCAS
range so equipped - is technically feasible.

1. All radars are assumed equipped with azimuth reference

signals.
In this situation, the range and bearing from BCAS of a
single intruder aircraft can be determined if it is being tracked
by BCAS using two or more ground radars. The range to each radar

can also be calculated.

Both simulated and flight test data verify that this mode
of operation is possible in all but a set of unfavorable configu-
rations. The unfavorable configurations are the following:



a) BCAS in line with the two radars; both radars on one
side.

b) The intruder aircraft between BCAS and either of the
radars.

c) The BCAS aircraft between one of the radars and the
intruder.

The width of the bad ranges depends on the characteristics
of the configuration as a whole. In the worst part of each, the
iterative solution algorithm fails to converge to any solution.
Near the edges of the bad region, the configuration computed from
the measurements is highly sensitive to measurement errors. This
error sensitivity is intrinsic in that the configurations are such
that large changes in the relative positions of the aircraft (and
radars) cause small changes in the observed measurements. Then,
inversely, small changes in the measurements, such as those aris-
ing from measurement noise, cause large changes in the configura-
tion that can be deduced from the measurements.

Outside the bad ranges, the relative position of the intruder
aircraft can be calculated with an RMS error in position of
generally less than 300 feet, depending on the configuration.

The ranges to the radars can also be calculated, but the
values obtained are quite sensitive to errors in the measurement
of differential azimuth and may have errors of several miles.

It is important to notice that, under some circumstances,
two distinct configurations of radars and aircraft will produce
the same set of values for all the measurements obtained by the
BCAS. In such a case, it is theoretically impossible to determine
from the set of static measurements obtained at one time which of
the possible configurations actually gave rise to the measurements.
The ambiguity can be resolved by making other measurements, e.g.,
an active measurement of target range. In addition, although the
possibility of the false solution may persist for a period of
time, so that a false track for the intruder may be established
instead of the true one, the radar positions computed in conjunc-
tion with the false track will in time be seen to be inconsistent
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in that the radars will appear to move relative to each other.

2. No radars are assumed equipped with azimuth reference
signals.

In this situation, BCAS can determine the shape of the con-

figuration of radars and aircraft if there are two radars and

two target aircraft. The measurements contain no absolute azimuth
reference signal. Hence, the orientation of the configuration
cannot be determined directly, but only the bearing of each radar
and aircraft relative to some arbitrary reference within the con-
figuration.

It has been suggested that the BCAS-equipped aircraft might
be able to compute its own position relative to the radars at a
number of consecutive times. Then it could relate its own flight
direction to the fixed direction of the line connecting the two
radars and use that as the known reference direction in determin-
ing the bearing angles toward the intruder aircraft.

It was found in the course of the simulations that the range
of configurations in which the computed results are intrinsically
highly sensitive to measurement error is more extensive in this
case than in the case where both radars are equipped with azimuth
reference signals. The bad configurations include the following:

a) BCAS in line with the two radars; both radar on one side.

b) Either intruder aircraft between BCAS and either of the
radars.,

c¢) Both intruder aircraft in the same direction as viewed
from BCAS.

In addition, the current heuristic algorithm used to obtain
an initial approximation tends to fail when an intruder aircraft
. is in the direction directly opposite that of a radar, when viewed
from BCAS, or when BCAS is directly between the intruder aircraft.
The difficulty in these regions can be eliminated, since it arises
from the algorithm used, and not from the nature of the dependence
between the configuration and the measurements.



For those configurations in which the aircraft and radar
positions can be reliably computed, (i.e., in the good ranges}),
the errors in range to the target aircraft are comparable to the
errors obtained using radars that are all equipped with azimuth
reference signals. The computed radar distances are considerably
more accurate. However, the bearing angles computed relative to
the line connecting the radars have errors on the order of several
degrees. This suggests that the proposed scheme of operation
with no azimuth reference signals at all may have difficulties.

A definitive judgment must rest on an analysis of a tracking
scheme in the dynamic situation.

3. Some radars, but not all, are equipped with azimuth re-

ference signals.

It is assumed that the BCAS at any one time would be in range

of only one radar with azimuth reference signals. Other radars
would be available for locking and for tracking targets, but these
would not have azimuth reference signals.

In such a situation, the problem of computing the configura-
tion of radars and aircraft at any one instant is essentially the
same as in the case of no azimuth reference signals. Two radars
and two aircraft are required. The only difference is that, once
the shape of the configuration has been determined, it can be
properly oriented on the basis of the azimuth measurement.

The extent of the bad range for this case is identically the
same as in the case of the system with no azimuth references, as
is the error sensitivity of the computed ranges to the intruder
aircraft and the radars. The bearing errors to the radars and
the aircraft are smaller than those achieved when no radars are
equipped with azimuth reference signals.



2, BCAS CONCEPT DESCRIPTION

2.1 DEFINITION OF CONCEPT

The Beacon-based Collision Avoidance System (BCAS) concept
(which in a few cases differs from the experimental BCAS design)
is based on the use of Air Traffic Radar Beacon System (ATCRBS)
signals in space. By receiving both interrogations from multiple
ground sites and their elicited target replies and processing
them in an on-board computer, the BCAS detects all targets in a
coverage volume, computes their range and bearing in real time,
identifies potential threats, and determines suitable evasive
maneuvers. Both the indicated maneuver and the relative position
of other aircraft are displayed to the pilot.

The basic differences in concept between BCAS and other CAS
systems are that BCAS derives and uses the bearing to the threat,
and that BCAS explicitly uses ATCRBS signals without interference

to ATC operations.
In particular,

1) The threat determination and the selection of evasive
maneuvers are performed in flight, independently of ground sur-
veillance and computers.

2) Both vertical and horizontal evasive maneuvers may be
selected, as appropriate.

3) BCAS derives the bearing to the threat by multilateration
techniques, using signals from several ground sites received on
an omni antenna, instead of using scanning beam antennas or RF
phase measurement techniques.

4) BCAS provides protection against all aircraft equipped
with standard ATCRBS Mode C transponders. It does not require
any special equipment on the threat aircraft for operation.

BCAS has two operating modes--passive and active. The
principal operating mode is the BCAS passive mode. In the passive
mode, the BCAS monitors ground radar interrogations and transponder
replies without emitting interrogations of its own. (See Figure 2-1)
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FIGURE 2-1, PASSIVE BCAS




From the sequences of interrogations received by the BCAS
aircraft while in the successive main beams of the ground interro-
gator, the BCAS can determine characteristics of the radar which
allow it to "lock on" the radar., i.e., to calculate the relative
angular position of its antenna and to predict the time of occur-
rence and the mode of its interrogations. Basic properties that
characterize each radar are interrogation frequency, interrogation
mode interlace, and rotation period. Each radar has a fixed in-
terrogation sequence, generally distinct from those of all other
radars in its area. The interrogation sequence may be either a
fixed pulse repetition period (PRP) sequence, in which all inter-
rogations are uniformly spaced, or a staggered PRP sequence, in
which a sequence of up to 8 different PRP's repeats periodically.
Each radar also has a fixed interrogation mode interlace pattern,
typically ACAC or AACAAC (A identity, C altitude) and a constant
antenna rotation rate. All interrogator antennas rotate clock-
wise, i.e., W to N to E.

Two basic measurements, the DAZ and TOA are made in the pas-
sive mode and serve to relate the position of the BCAS, the in-
terrogator, and the target aircraft.

The Differential Azimuth (DAZ) is the angle between the BCAS
equipped aircraft and the aircraft of interest as measured from
the ground site. It is the angle between the interrogator beam
when pointing at the BCAS and when pointing at the other aircraft.
It is computed by dividing the interval between the time that the
interrogator antenna points at the BCAS and the time it points at
the other aircraft by the rotation period of the antenna. The
time that the antenna points at the BCAS is taken to be at the
middle of the burst of main beam interrogations received. The
time that it points at the other aircraft is taken to be at the
middle of the group of replies elicited by the interrogator and
received by the BCAS "listening in'".

The Time of Arrival (TOA) is a delay in time between the
directly received interrogation at the BCAS equipped aircraft and
the time of receipt of the intercepted reply from the other
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aircraft to the same ground radar interrogation. It is a measure
of the difference between the straight line distance from the SSR
to the BCAS and the sum of the distances from the SSR to the other
aircraft and from the other aircraft to the BCAS. 1If both the
BCAS and the other aircraft are simultaneously in the main beam
of the interrogator, the TOA can be measured directly as the
interval between the receipt of the P3 pulse from the interrogator
and the transponder reply from the other aircraft, (reduced by 3
microseconds to compensate for the transponder delay). When only
the other aircraft is in the main beam of the interrogator, the
TOA is determined as the interval between the calculated time the
P3 pulse would have been received and the receipt of the trans-
ponder reply, corrected by a 3 microsecond transponder delay.

The time at which the P3 pulse would have been received may be
calculated in two ways. The BCAS may receive the P1 and P2 pulses
radiated outside the main beam for side lobe suppression and add
to the time of receipt of the P1 pulse the P1 - P3 interval appro-
priate to the interrogation mode used. Alternatively, the BCAS
may calculate all P3 times on the basis of the main beam interro-
gation times and the measured interrogation patterns and pulse
repetition periods (PRP). Both approaches have been implemented
in versions of the experimental BCAS system.

If the ground radar site is equipped to generate an azimuth
reference signal, then the BCAS can also determine its Own Azimuth
(OAZ) with respect to the radar by comparing the interval between
the azimuth signal when the antenna is pointed in a known direc-
tion and the time of main beam center passage past the own air-
craft with the antenna rotation period. 1In general, the BCAS and
the threat aircraft must both be in the coverage region of at
least two of the same ground radars if the calculation of the
other aircraft's position with respect to the BCAS is to be pos-
sible on the basis of the passive mode measurements.

Outside of such ground radar coverage, the BCAS operates in
the active mode, emitting ATCRBS-compatible interrogations with
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an on-board transmitter. The TOA measurements obtained from
the active interrogations are directly proportional to range. The
target altitude is obtained from mode C replies.

In the total absence of the ground radar coverage, €.g., OVer
the ocean, active mode BCAS (See Figure 2-2) has available only
range and relative altitude information from which only vertical
threat avoidance maneuvers can be determined.

In a single ground radar coverage (See Figure 2-3) with known
azimuth, the passive and active measurements may be combined and
are sufficient to calculate the bearings to the threat, so that
horizontal threat avoidance maneuvers can be selected where
appropriate.

There is a variety of conditions under which the positions
of threat aircraft relative to the BCAS can be computed from the
BCAS measurements. In general, if own azimuth (OAZ) to two ground
radars is known, then the range and bearing to a single target
can be calculated from the passive mode BCAS measurements. The
calculations also yield values for the distances to the radars,
though these tend to be quite sensitive to measurement errors.

If OAZ relative to both ground radars is not known, then no
solution based only on passive mode measurements is possible for
a single target aircraft. In the presence of two targets, it is
possible to compute the range to each target and each radar, and
the bearings of the radar and the targets relative to each other.
i.e., one can calculate the shape of the configuration of radars
and aircraft, but not its orientation in space. If OAZ to one
radar is known, the orientation of the configuration is determined.
Otherwise, one can in principle compute the configuration at
several successive instants of time, separated by an interval
during which the BCAS aircraft has moved, and use the known direc-
tion of motion to orient the configuration of aircraft and radars.
A solution requiring no OAZ signals from the ground sites is the
most desirable one, in that it permits BCAS operation without
requiring any modification of ATCRBS ground sites. '

13
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Once the distance and direction from the BCAS of a radar has
been established, then the position of any number of potential
threat aircraft relative to the BCAS can be determined from the
DAZ and TOA measurements of that one radar.

The basic principle of BCAS is to listen in on ATCRBS signals
in space. The passive listen-in mode listens to the signals
generated by the ground ATCRBS sites and their elicited Mode A -
identity and Mode C - altitude reply messages. The 1030 MHz
interrogating signals and 1090 MHz reply messages are received in
a common time reference to establish two basic measurements: (1)
Time-of-Arrival (TOA) and (2) Differential Azimuth (DAZ). If
ATCRBS ground sites have been modified to emit azimuth reference
pulses, Azimuth can also be determined.

In the active BCAS mode an on-board transmitter generates
additional ATCRBS - compatible interrogations and the system can
then listen to the elicited aircraft replies. The interval
between the time the interrogation signal is sent out and the
time that the aircraft reply is received is proportional to the
range to the target.

The passive mode is intended for use in areas of dense traf-
fic to minimize interference with the ATC system. It is assumed
that such areas in general will have adequate ground radar cover-
age. The active mode is intended for areas outside of radar
coverage (where traffic densities are expected to be low), as well
as for exceptional situations where ground radar coverage fails
(e.g., due to vertical lobing or line-of-sight interference).

The following discussion of ATCRBS is presented to bring out
features fundamental to the BCAS concept.

The ATCRBS system transmits and receives signals on a four-
degree wide beam that sweeps through 360 degrees once every four
or 12 seconds, depending on the type of radar installation.
Transponder interrogation pulses are transmitted on a frequency
of 1030 MHz, and the transponder replies are transmitted on a fre-
quency of 1090 MHz. The interrogation pulses are typically
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transmitted once every 2.5 milliseconds, so that an aircraft
transponder is interrogated about 20 times as the beam sweeps
over it. The interrogation pulses consist of two major pulses
that are generally separated by 8 or 21 microseconds, depending
on the type of transponder interrogation being employed. The 8-
microsecond spacing (Mode 3/A) elicits an identity-coded message
from the transponder, while the 21-microsecond spacing (Mode C)
elicits an altitude-coded message. Other interrogation types,
characterized by different pulse spacing, are defined. The BCAS
is not required to reply to these or to recognize replies to them
from other aircraft. However, the BCAS will be able to identify
their presence in the mode interlace pattern in order to deter-
mine the radar stagger pattern, so as to be able to lock to a
radar using other modes in addition to modes 3/A and C. All
transponder replies are delayed by 3 microseconds, and the sub-
sequent reply consists of two framing pulses separated by 20.3
microseconds, with up to 12 identity or altitude code pulses
between the framing pulses.

2.2 EXPERIMENTAL BCAS

The experimental BCAS differs in only a few respects from the
BCAS concept described in Section 2.1. It is based on the concept
of listening in on the ATCRBS ground interrogations and their
elicited replies within ground radar coverage areas, and of gener-
ating ATCRBS-compatible interrogations with an on-board trans-
mitter in those areas where ground radar coverage is poor or non-
existent. Experimental BCAS does not require any a priori know-
ledge of the environment, the radar sites, or target equippage,
and it provides protection only if the threat aircraft is equipped
with an ATCRBS transponder replying with both altitude and identity
codes (Mode C). At the time for the tests reported here, the system
required operator intervension to achieve radar lock, and the
computations of the target range and bearing were carried out on
the ground from data recorded in flight.
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2.2.1 Experimental BCAS System Design

A block diagram of the experimental system designed to test
operation in both the passive and the active mode is shown in
Figure 2-4, and its functional diagram in Figure 2-5.

The system was locked manually to ground radars with both
fixed and staggered PRP's and measure TOA's and DAZ's. A number of
SSR's were modified to emit azimuth reference signals so that the
system could also determine OAZ. For the purpose of this experiment

only the azimuth pulses were radiated at 1030 MHz on the omni and
main beam antennas of the interrogators 2 microseconds after the P3
pulse. The experimental system (See Figure 2-4) included a magnetic
tape drive for recording data for posz-flight‘analysis, and a

color alphanumeric CRT display and a teletype for real-time per-
formance monitoring. Range and bearing calculations for threat
aircraft were performed after the flight from the recorded data.

The system included an active interrogator to allow simple active
mode operation in addition to the passive mode operation, and

combination of active and passive modes.

2.2.2 Experimental BCAS Modifications

Two major improvements are being added to the experimental
system: (1) automatic radar selection and lock-on and (2) main-
taining radar lock by synchronizing the BCAS internal clock with
the main beam interrogations, rather than by continuously moni-
toring SLS pulses. Both modifications have already been tested
successfully according to information from NAFEC. Additional
BCAS improvements are being sought; these will include in-flight
computation of target range and bearing for estimating flight
trajectories and the resultant capability to determine and com-

mand horizontal evasive maneuvers.

18



6T

TOP
ANTENNA

BOTTOM
ANTENNA

COLOR
DUAL RECEIVER
1030/1090 MHz DISPLAY
VIDEO NOVA COMPUTER UTILITY s
INTER INTER- [ ™| PRINTER
DUAL RECEIVER FACE FACE
1030/1090 MHz SYSTER
<" DISPLAY
32 WORD CORE MEMORY
1,SEC CYCLE TIME
ACTIVE MODE I
INTERROGATOR PILOT DISPLAY
1030 MHz
PAPER TAPE || | PAPER TAPE
READER PUNCH
MAGNETIC
TAPE DRIVE
FIGURE 2-4. EXPERIMENTAL BCAS SYSTEM



0¢

1030 MHz

INTERRO-

GATIONS

(SSR)

ACQUISITION

PRP PATTERNS
SCAN RATE

SIGNATURE TABLE

MAIN BEAM UPDATE
(10 RADARS)
AZIMUTH PULSE

LOGIC FOR SELECTION
SSR'S

{3 RADARS)
"LOCK-ON"

1090 MHz
ﬁ
REPLIES

WIDENED AZIMUTH
TARGET REPLIES

FIRST CORRELATION

AZ, ALT.
NO. HITS
(HISTOGRAMS)

TARGET DECLARATION

SECOND CORRELATION

RADAR TRACK

f gl SCAN-TO-SCAN

TAU'S
EXTRAPOLATION

TOA, AZ, IDENT., ALT.

THIRD CORRELATION
SYSTEM TRACKS -5

=gt |DENTITY

ALTITUDE
ACTIVE INTERROGATION

THREAT LOGIC
TAU CRITERIA

CAS

FIGURE 2-5,

i TAU - 1 25 SEC.

TAU -2 40 SEC.

DISPLAY

TIE-BREAKER

v

BCAS FUNCTIONAL BLOCK DIAGRAM



3, ANALYSIS

3.1 INTRODUCTION

This section summarizes analyses of the BCAS concept feasibility
assessment study. Only a limited development of the equations is
given in the report; for more details one should refer to the
following references: (1) Report number FAA-RD-78-34, "BCAS
Alternative Concepts for Determining Target Positions" discusses
trade-offs of alternative designs, and (2) Report number FAA-RD-
78-2, "BCAS Airborne Antenna Diversity Study" reports flight test
results and conclusions on the BCAS link reliability measurements
for the general aviation aircraft for both top and bottom mounted
antennas. Interference analysis details not covered adequately
in this report are available in the Technical Memorandum No. 1,
"Tests and Analysis of JTIDS Interference with BCAS."

3.2 RANGE AND BEARING CALCULATION

Figure 3-1 shows the geometric relationship between the
range and bearing of a target aircraft and the quantities measured
by BCAS by monitoring the interrogations and elicited replies
of a single SSR site.

The following equations describe the relationships among
the various parameters analytically. The subscript i designates
one SSR out of the available set:

The measured quantities are:

By = OWN azimuth of SSR to BCAS (DAZ)
a; = differential azimuth (DAZ)

Ti = the time of arrival (TOA)

H = altitude of target

Ho = altitude of BCAS

The initially (unknown) quantities describing the configura-

tion are:
51

Dy

slant distance between SSR and target
slant distance between SSR and BCAS
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slant distance between BCAS and target
bearing of target from BCAS
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Then the TOA, by definition, satisfies
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By the law of cosines, the differential azimuth (DAZ)
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It follows from the law of sines that

S

sin (Bi -8) = 7; sin a, =

> 3.2.3
_ §; - H sin a.
2 2 1
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This last equation (3.2.3) could be used to eliminate S

from (3.2.1) and (3.2.2). This would leave a set of two equatlons

relating the BCAS measurements Tl, o and Bi to the three unknown

R, 6, and Di' This set of equations can not be solved without data
from additional measurements. The measurements from two (or more)

interrogators are required to solve for R, 6 and Di' Alternatively
if R is determined by active measurement, then 6 can be determined

from the TOA, DAZ and OAZ measurement from a single site.

The following design concepts were evaluated.

1. Passive Mode BCAS; two design options:
(a) The azimuth reference signal based concept where two

ground interrogators and a simple target define the
minimum system.
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(b) The no-azimuth reference signal based concept, where
two ground interrogators and two targets define the

minimum system.

2. Mixed Mode BCAS; Azimuth/No-Azimuth Reference Signal
Combination.

The azimuth reference signal is required for at least
one of the interrogator sites. Two interrogators and
also two targets define the minimum system.

3. Single-Site BCAS,

A single interrogator site with azimuth reference
signal, a single target, and BCAS active mode
interrogation define the system.

The solution of the sets of equations arising in each of these
systems is discussed in detail in Reference 3.

The major emphasis was placed on the study of whether the
azimuth reference signals from SSR sites are necessary. A compari-
son of the alternative techniques was conducted based on the
accuracies in determining the range and bearing to a target from
BCAS equipped aircraft.

3.2.1 Passive Mode BCAS with Azimuth Reference Signals

A significant part of the analysis was devoted to the assess-
ment of the operation of the BCAS passive mode using azimuth
reference signals emitted by the ground interrogator sites. The
only case considered included two radar sites and a single target.
An algorithm was developed and implemented on a FORTRAN-coded
computer program for the TSC time-share computer system to compute
range and bearing to a target from the inputs using data collected
in-flight and from translated data.

The results of these tests and the associated analyses are
the following.

1. In the absence of measurement noise, the relative position
of the aircraft and radars can be determined exactly from
the BCAS measurements, unless multiple solutions occur.
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2. There exist distinct and different pairs of configura-
tions of radars and aircraft in which the BCAS will
receive identical sets of measurements, even in the
absence of measurement noise. If the BCAS receives a
set of measurements that may correspond to either of
several configurations, there is no basis within the
set of measurements pertaining to one aircraft at one
instant of time for selecting the actual configuration
correctly. If more data become available, either by
observing other aircraft replying to the same radars or
observing the same aircraft over an interval of time,
it may become possible to resolve the ambiguity.

3. When measurement noise is present, the effect of the
noise on the accuracy with which the relative positions
of the aircraft and radars can be determined is a function
of the configuration. Assuming measurement errors in
TOA, DAZ and OAZ of the magnitude experienced by the
experimental BCAS, the errors in the computed position
of the other aircraft were less than 100 meters for a
wide range of ''good" configurations. They were sometimes
much larger in the "bad" ranges, as discussed below.

3.2.1.1 Multiple Solutions - The reason multiple solutions come
about can be explained in terms of a sequence of geometric
arguments.

Geometrically, the measurements from one SSR relate the
position of the target aircraft to that of the BCAS in the fol-
lowing way:

For a given OAZ and a given separation d between the radar
and the BCAS, the TOA determines an ellipsoid of revolution on
which the target must lie. The radar and the BCAS are at the
foci of this ellipsoid. The differential azimuth determines a
vertical plane passing through the radar and the target. The
target altitude determines its horizontal plane.
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For a given value of d, the position of the target aircraft
is the intersection of these loci. Thus, the intersection of the
TOA ellipsoid with the altitude plane is an ellipse E in the
altitude plane.

The target must be where the ellipse is intersected by the
vertical plane determined by the DAZ. If the radar lies within the
ellipse E (projected to ground level), then there is only one
such intersection and the target position is uniquely determined
(for the assumed value of d). If the radar lies outside this
ellipse, there are two intersections, and a target at either
would result in the same measured values of TOA and DAZ (again
for the assumed value of d). This second condition can be visual-
ized as coming about if the TOA ellipsoid is long and inclined,
cut by the horizontal altitude plane at the end away from the
radar. (In fact, a necessary algebraic condition for the multiple
solution to occur is that ¢ . (TOA) < H, where c is the speed
of light).

In the normal passive BCAS operation, the distance d of
the BCAS to the radar is not given. Different values can be
assumed, and for each value the position(s) of the target cor-
responding to the measurement set can be constructed. As the
assumed radar-to-BCAS distances ranges over all possible values,
these possible target positions form a curve of two distinct
curves, which are the locus of possible positions of the target
consistent with the known BCAS and target altitudes and the measure-
ments of TOA, DAZ, OAZ for the one radar. Similarly, the locus of
possible target positions can also be constructed for another
radar. The target position must be consistent with both sets
of measurements; hence the target must be at a position where the
locus curves intersect. If the set of requirements for each
radar gives rise to only one locus curve, the target position is
uniquely determined as the intersection of these two curves. If,
however, one or both sets of measurement gives rise to two distinct
locus curves, then more than one intersection is possible, as
seen in Figure 3-2 (Reference 3, Sections 2 and 5).
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In cases when multiple solutions exist, it is important
that the correct one be found and that the false solution be
identified as such and rejected. The algorithm tested will find
only one solution in each case, which may or may not be the
true one. An extension to the algorithm has been developed but
not yet tested to find all solutions, when more than one may exist.

Recognition of the true solution may rest on observing the
consistency of the computed radar distances. If several actual
target aircraft are available, those solutions (where there are
several) must be selected which lead to consistent values for
computed radar distances.

If there is only one aircraft and that gives rise to multiple
solutions, then tracks must be formed corresponding to all
solutions. In time, it will appear that the radar positions
corresponding to the false solution will appear to move with
respect to each other. Once this is established, the false track
can be identified.

If the replies of the target to a third radar can be monitored
(or active interrogation can be performed), another consistency
check can be performed to reject the false solution.

3.2.1.2 Accuracy - In '"good" configurations of radars and air-
craft, measurement errors of the magnitude obtained by the experi-
mental BCAS (i.e. TOA errors with an RMS error of .15 microseconds
and DAZ errors with an RMS value of .25°) lead to relative position
errors for the other aircraft on the order of 300 feet in most
geometric configurations. The errors in the computed ranges to
the radar in these configurations tend to be on the order of a

few thousand feet. However, there exist configurations in which
relatively large displacements of the targets or radars lead to
small changes in measurements made by BCAS, or inversely, small
changes in measurements lead to large changes in the configuration
corresponding to the measurement set. This means that the values
of range and bearing calculated from noisy measurements will show
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large deviations from their actual values as a result of random
measurement errors. In some cases, the iterative algorithm may
fail to converge.

The configurations which may generate poor results are the
following:

1. Both radars in the same direction from the BCAS aircraft

(OAZl-OAZ2 less than ~10°).

2. The intruder aircraft between the BCAS and one of the
ground radars (]Bl~6| less than ~15°).

3. The intruder aircraft in the direction opposite the radar
from BCAS (IBi-8—180°| less than ~3°).

3.2.2 Passive Mode BCAS Without Azimuth Reference Signals

A purely passive BCAS system without azimuth reference signals
can operate when there are two radars and two targets.,

Since all the measurements available to the system are invariant
under rotation of the whole configuration, the bearing of one
radar may be specified arbitrarily. The three relative bearing
angles in the configuration are defined in terms of the arbitrary
reference direction.

The quantities measured are four TOA's, four DAZ's, and three
altitudes, or eleven measurements in all.

The interrelationship between measured and derived parameters
is shown in Figure 3-3.

Solutions to be found are for the parameters describing the
configuration. These are two distances to the ground interrogators
from OWN, two distances to both targets, three bearing angles
and three aircraft altitudes, or ten parameters in all. Thus, the
problem is overdetermined.

The method of solution is complicated and consists of a number
of steps. At the end, a solution is sought which in a useful sense
is a best fit to the data. The solution proceeds in three separate
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FIGURE 3-3. MEASURED AND COMPUTED PARAMETERS

essentially independent steps - coarse jnitialization, iterative
refinement, and least-squared-error fitting. The details of the
algorithm are discussed in Reference 3. An outline describing the
nature of the steps is presented below.

Step 1: The coarse jnitialization is based on the simplifying
assumptions that the BCAS-to-target distances are much smaller than
the BCAS-to-radar distances and that all aircraft altitudes can be
neglected. These simplifications allow the inherently non-linear
set of 8 equations

Tij = Sij + Rj - Di 3.2.4
2 2
S.. + d7 - 1%
= _1) 1 J 3.2.5
cosa ;; Zsij T

(i=1,2; j=1,2)
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to be reduced by various algebraic manipulations and successive
elimination of variables to a pair of simultaneous linear equations
that is solved for the target distances ry and r,. The original
set of equations for this simplified case is still overdetermined
(assuming the altitudes to be 0, there are 8 equations correspond-
ing to the measurements to be solved for seven parameters defining
the configuration). Therefore inconsistent sets of values can be
obtained for the other variables defining the configuration,
depending on the order in which the variables already solved for
were substituted back into the equations to evaluate the others.
The choice made is to determine each radar-to-BCAS distance on the
basis of the greater DAZ (so as to minimize the percentage error
due to measurement errors). The other quantities are computed in
an essentially random order, with no attempt made to minimize the
resultant inconsistencies.

Step 2: The coarse initialization obtained in Step 1 serves
as the initial configuration to be improved iteratively in Step 2.
The main goal of the process is to take into proper account the
aircraft altitudes, neglected during Step 1. Further, explicit
note is taken of the fact that the system of equations is over-
determined.

The calculations are performed iteratively. The distances and
angles are computed for the projection of the 3-dimensional con-
figuration of the aircraft on the horizontal pPlane. The effect
of the aircraft altitudes is taken into account by modifying the
measured values of TOA to compensate for the altitude.

One may note that the TOA

2 2 2
T =‘/s2 + HY o+ Jr + (H-H,)

2.7

i
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+
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where

e ___JSZ . HZ - s 3.2.8
T C3.2.9
2
€r =‘/r + (H-HO)2
YOy e A 3.2.10
€p Vﬁ + Ho d

H - altitude of target

H0 - altitude of BCAS

One can therefore write a simplified, apparently linear TOA

equation

t=s+1 -4d 3.2.11

where

- - - 3.2.12
t T €g €Rr * ep-

At each step of the iteration, the value of t is recomputed on the
basis of the best current estimates of s, T and d until con-
vergence is achieved - i.e., until the values do not significantly
change from step to step. (In certain "bad" configurations the
process does not converge and it is therefore always terminated

after some fixed number of iterations.)

A set of three independent equations in the two unknowns d1
and d2 is developed. This overdetermined system is solved at each
iterative step in the following way:

Three equations developed on the basis of geometric arguments

require that:

Fy(dy, d,) = 0
F,(d;, dp) = 0 3.2.13
Fy(dy, d;) = 0
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where Fl’ FZ’ and F3 are functions only of the BCAS-to-radar
distances (d1 and dz), the measured differential azimuths, and (the
best current estimates of) the adjusted TOA (Equation 3.2.6).

These equations are mutually inconsistent - i.e., for any pair
of values (dl, dz), not all three functions Fl, FZ’ F3 will be
identically zero, but rather they will have values

Fildy, d3) = e

Faldys dy) = e, 3.2.14
Fgldy, d)) = e

such that

- 2 2 2 3.2.15
E = (e1 + e, * e3] #0

At each step, the iterative algorithm determines changes (Adl,
Adz) to d1 and d2 such as to reduce E, the measure of the in-
consistency of the equations.

The changes (Adl, Adz) are computed as follows: The equations
are made into linear equations in Adl and Adz.

F. (dl + Ad

i d2 + Adz) 3.2.16

1’

F. (d

i i
i d)) + mr= Ay, + i Ad

l’
= mi (Adl, Adz)
One seeks the values of Ad1 and Adz which minimize
2
E (ad;, ad)) = 2 e; (8d), ady) 3.2.17
i
The minimum occurs when

22 =) (G = 1,2) 3.2.18
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This is a set of two linear equations in the two unknown Ad1 and
Adz. Its solutions are used to improve the current values of d1
and d2’ to compute the other parameters that determine the con-
figuration from these, and to update the values of the adjusted
TOA's. The iterative step is then repeated until convergence is
obtained (or failure to converge 1is evident).

When this process is used to compute the configuration from
simulated noise-free measurements, perfect results are obtained
(where the process converges). When noisy measurements are used
(i.e. in the practical case), then reasonably good fits to the
actual configuration are obtained. However, these are not the
best fits to the data. Furthermore, as in the case of Step 1, the
parameters defining the configuration are determined by first
finding one pair of them - here dl and d2 - and then determining
the rest successively by substituting the values of the para-
meters already solved for into expressions involving the others.
Since the overall set of equations is overdetermined, the values
obtained will not in general be consistent. No attempt is made in
this step to resolve these inconsistencies. The theoretically
optimum solution is obtained by Step 3, for which the results
obtained here serve as initial values.

Step 3: The final step is again an iterative squared-error
minimization process. The eleven quantities measured by BCAS are
expressed as functions of the ten various coordinates defining the
radar-aircraft configuration.

. 3.2.19

where y, is the &-th measurement and X = (Xl . 'Xlo) is the
vector of coordinate values defining the radar aircraft configura-
tions. The components of X are the two BCAS-to-radar distances,
the two BCAS-to-aircraft distances, the three relative angles to
aircraft and radar from the BCAS, and the three aircraft heights.
The y, are the following: four TOA's, three reported altitudes,
and for each radar the sum and difference of the differential
azimuths of the two target aircraft relative to that radar. (The

sum and differences of the DAZ's are used, rather than the DAZ's
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themselves, because there is correlation between the measurement
noise components of the DAZ's, but not between the noise components
of their sums and differences.)

The actual measurements m, are noise corrupted, so that
there will be a random discrepancy e, between the predicted value
Yy of a given measurement when the configuration is described by

a given set of parameters X and the actual measurement m, .

ez = m2 - yR'(X) 3.2.20

This discrepancy e, is ascribed to measurement error. By what is
known as the principle of least squares, the assumed configura-
tion bests fits the measurement data when

2
- e .
g 3.2.21
E=2 —
. %
2
=3 my -y, (X)) 3.2.22
2 oi

. o 2 . .
is minimized (where og's are the variances of the independent
errors in the measurements).

The X minimizing E is found iteratively. The set equations
for the errors are first made into a set of linear equations in
terms of AX, incremented changes about the true minimum configura-
tion. The set of equations is of the form

m oF

F (ope) 3 3 3.2.23

o 9X
L X

3

=

The partial derivatives are evaluated at the current best
approximation of the true configuration. Temporarily holding
these partial derivatives fixed, standard multivariate regression
techniques are used to find the AX that minimizes E. The set of
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coordinates X is then corrected by adding the computed AX and
the process is repeated until it converges - i.e. until successive

AX's become sufficiently small.

3.2.2.1 Overall Assessment of the System Without Azimuth Reference
Signals - Simulations were conducted to see how the BCAS would
perform from the measurements based on radars without azimuth ref-
erence signals. The accuracy of the computed relative positions in
"good" configurations was found to be equivalent to that achieved
using the system with azimuth reference signals. As in the case of
radars with azimuth reference signals, there are ranges of con-
figurations in which the solutions are inherently very sensitive

to measurement errors. These configurations include the following:

1. when the two radars are colinear when viewed from the
BCAS

2. when either of the target aircraft is in between the BCAS
and one of the radars

3. when the BCAS is directly between either target aircraft
and one of the radars

4. when the BCAS aircraft and both target aircraft are in a
line.

The extent of each bad range is a function of the total
configuration. Two target aircraft are involved, and the
unfavorable placement of either can make the whole configura-
tion "bad". It appears that the probability that a configuration
will be "bad" is therefore greater for the no-azimuth-reference
system than for a system based on azimuth reference signals re-
quiring only one target aircraft for solution.

Aside from the inherent inaccuracy of the solutions in certain
configurations that arises from the nature of the relationship of
the configuration to the measurements (large changes in configura-
tion correspond to small changes in the measurements), there are
still difficulties with the solution algorithms as currently
implemented.
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The final iterative least-square fitting process (Step 3)
will converge only if the initial approximation to the configura-
tion is close enough to the final configuration. Trial simula-
tions showed that neither Step 1 nor Step l and Step 2 in combina-
tion always resulted in sufficiently good approximations. In a
series of trials, using ten sets of noisy measurements at each
of 216 different configurations, it was found that roughly 70% of
the time either the coarse initialization (Step 1) by itself or
in combination with Step 2 gave a good initial approximation, and
some 18% of the time neither did. The rest of the time, one or
the other process gave a good initialization, but not both. Thus
there is seen to be room for improvement in both processes. How-
ever, most of the cases of failure to achieve a good initializa-
tion occurred in configurations in which the final and theoretically
best achieveable fit was in any case highly error-sensitive.

3.2.2.2 Orientation of the Whole Configuration - Only relative
angles are computed in the no-azimuth-reference-signal system
considered above. To detect threats and select evasive maneuvers,
we must determine the bearing of targets relative to the OWN air-
craft flight direction.

Two possible schemes to do this were considered. First, one
can compute OWN's position relative to the radars at a number of
successive observation times. Then the known direction of OWN
flight can be related to the fixed direction of the line con-
necting the radars. Then, whenever a configuration is computed,
all bearings can be related to this fixed line. The simulations
that were conducted showed that bearings relative to the line of
positions of the radars could be calculated accurately to within
an error of generally less than a degree, given the expected
measurement errors. The dynamic calculations of establishing the
direction of this line from the known direction of OWN flight
were not simulated. The process must by its nature take some
time.
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An alternative, instant way of establishing all bearings
exists if in every region at least one ground radar emits azimuth
reference signals. If only one such radar is available, then the
determination of the shape of the radar-aircraft configuration must
be carried out by the technique described for no azimuth reference
signal, but the known (measured) bearing of the radar from OWN
can then be used to orient the whole configuration immediately.

3.2.3 Solution of Single-Site BCAS Equations

The situation was considered that the BCAS may be locked to a
single radar, which is assumed to furnish azimuth reference
signals. The information to be derived from passive listening-in
to only one radar is insufficient to determine the position of the
target. A solution for target bearing and radar range is possible
if measurements of target range obtained by active mode interroga-
tion are combined with the passive mode TOA, OAZ and DAZ measure-
ments from the one radar.

Two algorithms have been developed to perform this calculation.
One is an iterative scheme relying on geometric arguments (Reference
3, Section 4). The other technique involves the exact solution of
the equations relating the configuration parameters and the measure-
ments. In particular, a fourth-order algebraic equation (poly-
nomial) is developed in the argument X, where X is the sine of
an angle related to the target bearing angle. The equation is
solved exactly (by formula). The real roots (when more than one
is obtained) are tested for consistency with the geometric con-
straints to obtain those which correspond to the actual solution.
Limited simulations have been performed using this algorithm.

It has been established that bearing accuracies comparable to

- those for the purely passive schemes are obtained in the presence
of measurement errors. Multiple solutions occur in some configura-
tions which are consistent with all the measurements. These come
about in essentially the same way as those which occur with the
two-radar passive solution found for radars with azimuth reference
signals (Section 3.2.1.1). There are two "bad ranges", centered
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on target positions which have the radar and the BCAS and
target aircraft colinear.

Sample runs were conducted, simulating a BCAS aircraft 20
miles from a radar, and a target 3 miles from the BCAS. Both
when the target was between the BCAS and the radar and when it was
roughly in the direction opposite from the radar, the width of
the bad range was some 40°. In the bad range, the bearing error
was on the order of several degrees. Elsewhere it was generally
less than one degree.

3.3 SYNCHRONOUS GARBLE ANALYSIS

3.3.1 BCAS Active and Passive Mode Synchronous Garble

Synchronous garble is caused by the coincidence of two reply
messages in time. It is a more severe problem for BCAS than it is
for the ATCRBS system. The active BCAS both interrogates and
receives target replies via an omni antenna, while ATCRBS inter-
rogates and receives replies only within a 4° wide beam. Since
the ATCRBS reply is 20.3 microseconds long, the active BCAS will
get overlapping replies to an interrogation from any pair of air-
craft located anywhere in a spherical shell centered at the BCAS
and 1.6 nautical miles thick. The problem of synchronous garble,
among others, serves to restrict the use of active BCAS to regions
of relatively low traffic density.

Synchronous garble may also occur in passive BCAS operation
when the target aircraft are being interrogated by a ground SSR.
However, the replies from two targets will arrive garbled at a
passive BCAS only if the target locations satisfy a more extensive
set of conditions. Two targets will garble only if they lie in
.the same interrogator beam-width and also on the ellipsoidal
constant-TOA surfaces that correspond to TOA's separated by less
than 20.3 microseconds. The volume of such airspace depends in a
complicated way on the radar and aircraft geometry, but is in
general smaller than for the active BCAS.
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Another way to assess the 1likelihood of synchronous garble
is to assume a configuration of two target aircraft and to then
consider the volume of airspace within which a BCAS aircraft would
receive their replies synchronously garbled.

For an active BCAS, there is always a region in which it will
receive the replies of two targets synchronously garbled. This
region lies about the plane of symmetry separating the two targets.
Regardless of how far apart the targets are, an active BCAS
equidistant from both will necessarily receive their replies
completely overlapped. There will be partial overlap of the
replies as the BCAS moves off the plane of symmetry, and if the
targets are sufficiently far apart, the BCAS will receive their
replies in the clear. The boundaries between the region in which
the BCAS receives the replies in the clear and in which they arrive
overlapped is hyperbolic (see Figures 3-4 to 3-9). The region
in which reception is garbled becomes more extensive as the targets
come closer together. When they are within 10,150 feet or less,
it encompasses all space.

For passive BCAS, there is no synchronous garble unless both
target aircraft are illuminated by the same ground SSR beam. If
two target aircraft are colinear with an SSR interrogator, there
always exists a region in which their replies are received
garbled. The size of this region depends on the separation of
the aircraft; its shape is that of a hyperboloid of revolution
whose focus is one of the aircraft. Independent of the distance
between the two aircraft, their replies will totally overlap in
time along the extension of the line of position of the radar and
the two aircraft beyond the farther aircraft. If the aircraft are
far apart, there is a narrow region, hyperbolic and convex toward
the radar, within which the replies will be received at least
partly overlapped. This region becomes wider when the planes are
closer together, and ultimately become concave toward the radar for
separations less than 20,300 feet.
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When the aircraft come within 10,150 feet (still colinear with
the SSR), the region in which their replies overlap encompasses all
space.

Figures 3-4 to 3-9 illustrates the shape of the regions in
which an active BCAS (vertical shading) and a passive BCAS
(horizontal shading) will receive target replies garbled. The
figures are plotted for various target separations. The targets
and BCAS are assumed to lie in the plane of the diagrams. For pas-
sive BCAS, the radar is assumed in the same plane and colinear with
the targets. (There is no passive mode garble unless the targets
and the radar are aligned.)

Within the garble regions, the extent of the reply overlap
varies between complete message coincidence (for active BCAS, on
the line of symmetry; for passive BCAS, colinear with the targets
and beyond them, when viewed from the radar) to shifted replies
just touching (along the hyperbolic boundaries of the garble
regions).

For the passive BCAS, flight tests have shown that the syn-
chronous garble phenomenon does occur, but that even in the
presence of synchronous garble, the experimental system was able
to decode properly 38% of the target replies.

3.4 BCAS/ATCRBS/MONOPULSE COMPATIBILITY

A number of improvements/modifications are being implemented
or planned to improve the performance of the ATCRRBS system. In
FAA Order 6360, Air Traffic Control Radar Beacon System (ATCRBS)
Improvments Program, the various planned improvements/modifications
were classified into fourteen (14) categories. In Appendix A,
these 14 categories were examined to determine which ones have a
potential impact on BCAS operation and deserve further studies and
evaluating.

In Table 3-1 are listed the selected categories which were
judged to have a potential impact on BCAS operation. Categories
IA.3 and IC.5 pertain to improvements affecting BCAS coverage.
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II.

TABLE 3-1. ATCRBS IMPROVEMENTS/MODIFICATIONS WITH POTENTIAL IMPACT ON BCAS OPERATION
Potential Impact
Category Relevant Improvements on BCAS Action Required

A.3(a) Power

Reduction

C.5(b)(c) Inter-

rogator
Modifications

C.1(b) Improved

Antenna

a) Reduce Power to
Minimum Requirements

b) Azimuth Gate Power
Output
c) Trevose Fix

bl) "Integral'; SLS

b2) Monopulse
Operation

a) Reduces Coverage
Areca

b) Reduce Coverage
at Some Azimuth

c) Suppresses
Transponder
Replies at Some
Azimuth. -
Impact Unknown

bl) Unknown -
signals radiate
in restricted
azimuth

b2) Unknown-Fewer
Pulses Per Scan

a) Assess Impact on
Coverage-Range of
SLS Signals.

b) Site Specific
Coverage Analysis

c) Site Specific
Study and Analysis

bl) Assess Impact of
"Integral™ SLS
antenna
pattern

b2) Assess Impact of
Monopulse
Operation




Reduction of transmitted power to minimum required levels (to
minimize interference) would reduce the coverage area. The other
interference reducing improvements are site specific and should be
analyzed as such.

Category IIC.1 appears to be the main category with a major
potential impact on BCAS operation. This improvement/modifications
involves the incorporation of a monopulse antenna into the ATCRBS
system. The antenna may also utilize an “integral' feed to generate
the side lobe suppression (SLS) pattern. An "integral" antenna feed
system would provide a better match between the main beam (MB) and
the SLS vertical lobing pattern. These improvements/modifications,
if incorporated into the ATCRBS system, may result in the following:

a. In monopulse operation fewer interrogation and target
reply pulses would be generated per scan.

b. In an "integral' antenna system, the transmitted SLS
signals would be available in a resitricted azimuth only.

In the passive mode of operation, BCAS operates on the main
beam interrogation and SLS signals for locking to ground radars,
timing, target detection and measurements of basic parameters
such as BCAS own azimuth, differential azimuth, SSR scan period
and the time of arrival of target replies. An evaluation of the
impact of the above ATCRBS improvements/modifications on BCAS
parameters and performance has been initiated.
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4, FLIGHT TEST

During a nine month period approximately 100 BCAS flights were
flown at the FAA National Aviation Experimental Center (NAFEQ) ,
Atlantic City, New Jersey. These flights were in support of
evaluation of the BCAS system, the development of the system.by the
contractor, system demonstrations, azimuth reference signal
studies, and JITS compatability studies. Over 200 hours of flight
test data was recorded for use in the analysis of the system.

While flying a variety of test patterns, the BCAS system was
operated in the passive mode, active mode, and a combination of
both. Test patterns included two aircraft encounters (BCAS and
other) flying level, curved and climb/drive paths. Flights were
tracked by the Extended Area Instrument Radar (EAIR), Phototheo-
dolytes, and the Automatic Radar Terminal System (ARTS III). The
following paragraphs describe test bed, equipments, procedures and
conduct, and test flight patterns.

4.1 FLIGHT TEST ENVIRONMENT - GENERAL

A flight test bed was established at NAFEC to provide as real-
istic an environment as possible and at the same time satisfy test
program requirements. A flight range center staging area about
the Millville, New Jersey Vortac was selected. This area was
within a triangle formed by the Secondary Surveillance Radar (SSR)
sites at NAFEC (ASR-4 and ASR-5), Philadelphia (ASR-7) and Newport,
New Jersey'(Transportaﬁle Beacon Siting Van) (Figure 4-1). This
satisfied a primary test requiremént that beacon sites be separated
in azimuth from the BCAS aircraft by 90° or more. The Philadelphia
ASR-7/BI-4 and NAFEC ASR-4/BI-3 are operational FAA terminal radar
facilities, while the ASR-5/BI-3 at NAFEC is an experimental site
which was operated in conformanée with the U.S. National Beacon
Standards. These three sites are tied into ARTS III terminal con-
trol facilities: Philadelphia ASR-7 with the Philadelphia ARTS III
and the NAFEC ASR-4 and ASR-5 with the experimental ARTS III Ter-
minal Automated Test Facility (TATF) located at NAFEC.
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Data recordings were made at both ARTS III facilities and used
for multi-aircraft tracking and environmental investigations
(gargle, azimuth reference pulse interference, fruit, etc.) The
beacon sitting van is a transportable BI-4 beacon system which was
initially set up at Bader Field, New Jersey and later relocated to
Newport, New Jersey. The Van's flexibility in selection of PRFs,
antenna rotation rates and output power allowed variations in the
flight test conditions while still operating within the U.S.
National Beacon Standard. These sites were modified to transmit
azimuth reference pulses which were required by the BCAS.

A fixed target or "Parrot'" was established at Mizpah, New
Jersey using a reference transponder. This provided a fixed tar-
get at an accurately surveyed location. The BCAS aircraft would
then "fly the parrot" while it was being tracked by the Extended
Area Instrumentation Radar (EAIR). The raw EAIR data was rotated
and translated to the coordinate system of the NAFEC ASR to which
the BCAS was locked. Position coordinates of the Mizpah tower,
relative to this ASR, were then obtained using a NAFEC geodetic
position coordinates program. Values of Time of Arrival (TOA).
Differential Azimuth (DAZ) and Own Azimuth (OAZ) were computed
from the data and compared to the values recorded from the BCAS.
This measurement technique was, in part, necessary because of the
predicted accuracies of the BCAS system. The Phototheodolities,
EAIR, ARTS III (NAFEC and Philadelphia) and air-to-air Tacan were
used to establish the position of test aircraft during testing.
The systems were selected for use depending on the purpose of the
test and the capabilities of the systems.

Flight activity was coordinated to varying degrees with the
following organizations:

Atlantic City Approach Control

New York Air Route Traffic Control Center
Washington Air Route Traffic Control Center
20th Air Division, USAF ADC (W-107)
Lakehurst NAS and New Jersey ANG (W-107)
Patuxant River NAS (W-386A-B) (W-108)
Philadelphia Approach Control.

@ @ AN T
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Early in the program, briefings were given to the appropriate
organizations along with a set of flight patterns and airspace
requirements. Direct contact was made with the appropriate person-
nel approximately seven (7) days prior to a specific flight and
final coordination one (1) day before the flight. Any changes in
flight patterns, airspace requirements, or departure and arrival
times were accomplished by phone prior to the proposed departure
time.

4.2 TEST BED CONFIGURATION

The BCAS equipment was installed on a NAFEC Grumman G-159
twin-engine turboprop aircraft. Two such aircraft (N-47, N-48)
were used during the testing with the BCAS installed on either
N—45 or N-48 except for a special test flight when two BCAS
systems were installed, one on each aircraft. Other aircraft
used as targets, were a Convair 580 (N49), an Aero Commander
AC680-E (N50), and a Douglas DC-ér(N46). The BCAS included
special antennas which were installed at top and bottom locations
on N47 and N48 as shown in Figure 4-2. The ground facilities (sée
Figure 4-3 for the facilities at NAFEC) consisted of the following
equipments:

1. ASR-5/BI-3 - NAFEC Experimental system.

2. ASR-4/BI-3 - FAA Eastern'Region Facility, located at NAFEC.

3. ASR-7/BI-4 - FAA Eastern Region Facility, located at
Philadelphia, PA.

4. Transportable Beacon Siting Van/BI-4 - NAFEC system locat-
ed at Bader Field, Atlantic City and Newport, New Jersey.

5. Extended Area Instrumentation Radar (EAIR) - C-Band track-
ing radar used in the beacon tracking mode for ‘primary -
position data.

6. Phototheodolites - a four-station optical tracking complex
for accurately determining primary position data.

7. Range Control - provides real time to all test facilities
and aircraft and provides communications to facilities
and test aircraft.
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Display Controller (Color), MEGADATA Corp.

Mag tape recording system, DATA General Corp., Model 6021
Paper tape reader, DATA General Corp., Model 6013

Paper tape punch, DATA General Corp., Model 4012A
Printer, EXTEL, Model AH11R

Monochrome display controller/keyboard, MEGADATA Corp.
Second Monochrome Display, MEGADATA Corp.

The BCAS interfaced with the following systems:

1. The aircraft heading synchro was interfaced through the
contractor's synchro-to-digital converter to the BCAS
computer.

2. The barometric pressure system was interfaced with the
contractor's Aerosinc encoding altimeter.

3. The output of the Time Code Generator was interfaced with
the BCAS computer (Figure 4-6).

4.3 FLIGHT TEST PATTERNS

A set of 15 basic flight test patterns were designed to sat-
isfy the test requirements and aircraft capabilities. These
patterns are shown in Appehdix B and consist of figure eights,
rotating double-daisies, curved path encounters, etc. These
patterns were used not only for the formal test flights, but also
for the contractor's debugging flights,

In the course of the test program, it was necessary to modify
the test patterns to accommodate changing test requirements, air-
space problems, weather conditions, test bed equipment availability,
etc.

4.4 FLIGHT TEST PROCEDURES AND CONDUCT

The following is a brief scenario of the flight test designed
to collect BCAS Performance Data, illustrating test procedures and
conduct. The flight test or mission involved a series of two
aircraft encounters over the Millville VOR. The purpose of the
test was to gather encounter performance data of the BCAS system
while it was operating in both the passive and active mode.
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Prior to the start of the overall test program, it was estab-
lished that three test days a week with morning and afternoon
flights would be scheduled. The facility and airspace requirements
for each mission were reviewed and tentative test periods assigned.
This was, in part, necessary because of the long lead time needed
in scheduling some facilities and for coordination of airspace.

The mission test plans were reviewed again in detail before
the scheduled test period at a preflight meeting.

Items that were discussed included:

Purpose of test.
Personnel assignments,

Communication procedures and frequencies.

.

Test pattern(s).
Time synchronization procedure.

Test log recording procedures.

Data recording procedures and requirements.
Beacon codes to be used.
Aircraft status.

©C W o NN BN

=

Weather forecast.

'—I
[

BCAS operation.

[
~

Transponder calibration.

b
(&)

Status of all facilities to be used.

-
o+

Data tape collection and processing.
15. Tracking system requirements.

Alternate missions and procedures were established in the
event of problems in airspace allocation, weather conditions,
system failures, etc. This planning proved to be very important
because of the weather and the number of people and facilities
involved and the limited control that existed over some of the
resources. Weather was probably the greatest problem, as it im-
pacted our VFR requirement and the availability of operational
facilities and airspace.

For this sample mission, three beacon sites were needed: the
Philadelphia ASR-7, the NAFEC ASR-5 and the Newport van. People
were assigned to the NAFEC and Newport sites and given logs to
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record certain parameters (such as power, mode interlace, etc.)
and also to monitor the N/S azimuth reference pulse. At
Philadelphia, this was done by the Eastern Region technicians and
coordinated by phone.

Data was to be recorded at the Philadelphia and NAFEC ARTS III
facilities. Air Traffic Controllers from NAFEC were assigned to
the terminal control facility to assist in recording the necessary
data, coordinate the airspace usage, and to keep a data log.
Coordination for use of the facilities on each particular day had
been made earlier.

Communications were organized as shown in Figure 4-7. Three
radio channels were assigned: VHF# 1 for air-to-ground Air Traffic
Control, VHF#2 for air-to-air and air-to-ground for test personnel,
UHF# 1 for cockpit to cockpit flight crew coordination. Special
phone lines, accessible from the ARTS III (NAFEC), were installed
at the Philadelphia ASR-7 site and approach control, and the por-
table beacon siting van. Phone communications from ARTS III were
also available to EAIR, ASR-5, ASR-4, Range Control, CAD and the
beacon van.

Time synchronization was to be accomplished in the following
manner:

A portable Time Code Generator was synchronized
before each flight to real time at the Range Control
facility and then transported to the test aircraft.

The '"on board" Time Code Generator was then synchronized
to it. This system reference time was remoted to the
TATF and EAIR by Range Control. At the TATF, time was
entered into the system via the data entry keyboard

from the remote digital time display. A time check was
made with the Philadelphia ARTS III via phone and the
time difference, if any, was recorded. When all sys-
tems were operating, another time check was made.
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The flight test pattern and procedures were finalized. Pat-
tern #10 of Appendix A, a two aircraft modified or rotating double
daisy pattern was used. Encounters 1 through 12 were at the high
altitude and encounters 13 through 24 at the lower altitude.

Data acquisition performance was verified using a modified or
rotating double daisy which presents 360° of coverage in 12 runs,
with encounters 30° apart. This allows acquisition of data for
360° of coverage in a very short time, affording an opportunity
for necessary changes prior to the next flight.

In a typical rotating double daisy flight pattern, Aircraft
#1 will execute all turns to the left and Aircraft #2 will execute
all turns to the right. Aircraft #1 commences flying from 10 NM
west of the VORTAC ground station to 10 NM east of the VORTAC
station. The inbound flight to the station from the west at a
bearing of 090°, is the magnetic course to be flown to reach the
station. Passing the station and continuing eastward the VORTAC
bearing is 270°. Upon reaching a point 10 NM east of the station,
the pilot executes a 195° turn to the left, intercepting and posi-
tioning the aircraft inbound on the 075° radial of the station, or
a bearing of 255°. After each traverse of the VORTAC station, at
the 10 NM point, the pilot again executes a 195° left turn to
acquire a bearing to or a radial from the VORTAC station displaced
15° from the previous one. This process continues for a total of
12 transverses of the VORTAC station to complete 360° of coverage.

Aircraft #2 starts the pattern flying from 10 NM east of the
VORTAC ground station to 10 NM west of the VORTAC station. While
inbound to the station from the east, his bearing is 270°, which
is the magnetic course he must fly to reach the station. After
passing the station and continuing west bound, his bearing is 090°.
Upon reaching a point 10NM west of the station, the pilot executes
a 195° right turn, intercepting and positioning the aircraft in-
bound on the 285° radial of the station, or a bearing of 105°.

After each traverse of the station, at the 10 NM point, the
pilot again executes a 195° turn to acquire a bearing to or
a radial from the VORTAC station displaced 15° from the previous
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one. This process, as that of aircraft #1, continues for a total
of 12 traverses of the VORTAC station to complete 360° of coverage
(Table 4-1, Figure 4-8).

Usually this pattern requires both aircraft to maintain a con-
stant airspeed, normally 150Knts, with 400 feet of vertical separa-
tion. The exceptions are runs numbered 7 and 19, which are tail-
chase runs. During a tail-chase, aircraft #2 will increase speed
to 230Knts and start the turn-in at a point 14.3 NM from the
station instead of 10 NM. Aircraft #1 is designated as the control
aircraft and calls each mile mark during each run. This allows
Aircraft #2 to adjust speed so as to expect crossovers directly
over the VORTAC station.

As shown in Table 4-1, this pattern provides positive and negative
intercept angles throughout a 360° azimuth area in 30° increments.

After the preflight meeting, a briefing was held with the
flight test pilots and crews and the following items were resolved:

Aircraft/crew manifest

Block time/flight duration/fuel load

Lead aircraft/#2/#3, taxi and T/0 sequence
Pattern and position procedure
Altitudes/air speeds/distance calls

Run sequence list

Communications (A/G, A/A, ATC)

Transponder settings (front/rear)

Tracking requirements

Weather

Flight plan remarks (formations, waivers, etc.)
ATC coordination

Special remarks.

Immediately prior to test time the status of all equipment was
ascertained and communication links checked out.

When the aircraft were in position to start the pattern, the
flight test manager aboard the control plane would "call out'" the
start of run or encounter. He would then proceed to mark the
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TABLE 4-1. ANGLE ASSIGNMENTS FOR DAISY PATTERN

HDG. HDG.
#10. ENCOUNTER _ A/C#} __A/C#2 __INTRCPT ANGLE

1 090 270 180
2 255 105 150
3 060 300 120
4 225 135 90
5 030 330 60
6 195 165 30
7 360 360 )
8 165 195 30
"9 330 030 ' 60
10 135 225 90
1 300 060 120
12 ' 105 255 150
13 270 090 ‘ 180
1 075 285 150
15 240 120 120
16 045 315 90
17 210 150 60
18 015 345 " 30
19 180 180 0
20 345 015 -30
2 150 210 60
22 315 04s 90
23 120 240 120
24 28s 075 150
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crossover time and stop time (data was not to be recorded during
turns). He would also indicate to the ground test manager the
apparent success or failure of the encounter. The ground test
manager would note this on his log and also indicate whether any
problems were experienced with the ground equipment. If there
was a problem with a run, it was either repeated at the end of
the test period or rescheduled for another flight test period.

After the completion of the mission, the data tapes were
collected and submitted for reformatting or processing. When the
data tape printouts were received, they were spot checked for gross
anomalies using a '‘quick-look" data analysis capability at NAFEC.
Post-flight analysis studies were also made at NAFEC to assure the
continuing integrity of the test bed and to provide performance
status to TSC and the contractor. All data tapes after preliminary
écreening were prbvided to Transportation Systems Center (TSC).
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B, FLIGHT TEST DATA ANALYSIS
5.1 FLIGHT TEST RESULTS

A summary of measured and derived experimentally BCAS perfor-
mance values is presented in Table 5-1. Detailed analyses are )
given in the references to this report.

TABLE 5-1. EXPERIMENTAL BCAS ACCURACY

Parameter RMS Error Comments

Directly measured:

TOA .15 usec Measured against the
DAZ .30 degrees EAIR precision C-Band
OAZ .25 degrees tracking radar and a
Derived: fixed target as other.
6 .3 degrees
T 300 feet

The accuracy of the BCAS measurements was assessed by measuring
TOA's and DAZ's during a series of flights past the fixed trans-
ponder and simultaneously tracking the BCAS aircraft with the EAIR
precision radar, as well as with the ARTS III system. The TOA and
DAZ values measured by BCAS were then compared with predicted values
based on the geometric relationship of the radar, target trans-
ponder (determined by survey) and BCAS position (measured by the
EAIR radar). The mean values of the differences were attributed to
system bias, The variance of the difference between measured and
predicted values is considered to be due to random errors of
measurement.

The measured values of TOA, DAZ, and OAZ were also used to
compute the range and bearing to the target by solving equations
3.2.1 - 3.2.3.
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The computed values were compared to the values derived from
the EAIR radar measurements. In addition, an extensive set of
simulations were run to examine the effect of measurement errors
on the computed range and bearing errors in a wider range of
configurations than could reasonably be test flown. The sensitivity
of range and bearing accuracy to measurement errors does depend in
a complex way on the radar and aircraft configuration.

The values in Table 5-1 are representative of configura-
tions with radars about 20 miles from the aircraft, which are some
3 miles apart. There are, however, rather sharply defined con-
figurations when the BCAS and the target aircraft are approximately
colinear with the radar in which satisfactory values of range and
bearing to the target cannot be computed from the measurements.
In such cases, the BCAS must, where possible, select a different
SSR for tracking that target or use its on-board interrogator.

Test flights were flown to determine the maximum range at
which BCAS could utilize a given SSR., The relevant parameters
continuously observed were the quality of radar lock (SLS pulses
detected/total number of SLS pulses per scan), number of main beam
interrogation detected per scan, and number of Py pulses detected
per scan.

Flight tests were also conducted to establish if either the
PN pulses emitted by the SSR's or the active interrogations by the
BCAS were creating any interference with normal ATC surveillance
radars., Analysis of the data showed no interference with ATC
operation. A summary of measured BCAS characteristics is shown
in Table 5-2.

5.2 RANGE - BEARING EVALUATION

The measurements made by the BCAS system - the bearing to at
least two ground radars, the differential azimuths to a potential
threat, and the TOA's of the transponder signals from the threat -
are sufficient to calculate the range and bearing to the threat
from the BCAS aircraft. Currently these calculations are not
being performed in flight, but sufficient data are gathered to
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TABLE 5-2. EXPERIMENTAL BCAS CHARACTERISTICS

Parameter Measured Values
Number of Targets Tracked 9
Number of Radar Locks 3
Range to SSR (max.) 100 nmi

SLS Rec.. - 90dbm

MB Rec., -- 65dbm
Range to Target (max.)

Receiver - 85dbm 8 nmi

Probability of Detection See Note

NOTE: The data analyzed showed that all targets within the coverage
region detected by ARTS were also detected by BCAS. For some air-
craft, both ARTS and BCAS formed multiple tracks. However, the
derived position of these tracks, when compared, did not agree.

allow them to be performed afterwards. An algorithm was developed
to compute range and bearing from the data collected in flight
using off-line computers. This program was developed by TSC,

and implemented in FORTRAN for the PDP-10 computer, It is
identified as NUPAS. A detailed discussion of this algorithm

is given in Appendix D.

The new algorithm was tested in a set of simulations to
evaluate its performance with perfect measurement data and with
measurement data corrupted with known errors. The following was
established:

1. When the algorithm operates with perfect input data
(i.e., perfectly accurate TOA and azimuth data corresponding to
the position of the radars and the aircraft) it produces perfect
solutions for the range and bearing of the threat aircraft with
respect to our own (BCAS). The principal exceptions, whose causes
are understood and discussed in Appendix D, occur either when the
intruder aircraft is in a region between one of the surveillance
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radars and the BCAS aircraft or when the BCAS aircraft is between
the intruder and the surveillance radar. The algorithm is an
iterative one, but convergence is very fast. In two iterations,
the "noise-free'" solutions were found to be accurate to within
one foot in range and .01 degrees in bearing.

2. The solutions are not unduly sensitive to measurement
errors, A limited set of simulations were performed in which
known fixed errors were added to the "perfect" input values de-
scribed above. The errors were of the approximate magnitude of
the RMS measurement errors. The precise effects depend very much
on the specific configuration of radars and aircraft, so that
average values of the error effects are not in themselves meaning-
ful. In general, DAZ measurement errors may affect the answers
more than TOA errors., In all but the unfavorable geometries the
effects of the simulated input errors (*.27u sec in TOA, +.15° in
AZ and DAZ, +75 feet in H) resulted in computed positions of others
within 200 feet of the nominal location., The rate of convergence
was not significantly affected by the presence of the errors.

The algorithm was also applied to calculating separations -
between the two aircraft involved in the flight tests of October 15,
1976 using the actual data gathered on those flights. The flights
were encounters flown in the Milville area using the "rotating
daisy'" pattern. The BCAS was locking to the NAFEC ASR-4 and
Philadelphia terminal radars. Reply data received by the ARTS III
system at NAFEC was recorded.

The TOA, OAZ, and DAZ data for three of the flights are shown
in Figures 5.2-1-5.2-9.% The slant range between the aircraft and
the computed bearing from the BCAS aircraft to the target are
plotted in Figures 5.2-10 - 5.2-19. The slant range and bearing
derived from the ARTS measurements are plotted in the same figures
for comparison. Also, extrapolated data using the two second update
interval instead of the normal antenna scan rate of 4 seconds are
also presented in Figures 5.2-10a and 5.2-12a for comparison. The
smoothed data provide better results as evidenced from the graphs.

¥KIT figures and tables identified by 3-digit numbers are located
in Appendix F.
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The on-board interrogator controlled by the computer sends
out active mode interrogation sequences consisting of 12 top
antenna and 12 bottom antenna interrogations with a 30 microsecond
switch-over time between these interrogations.

The data from the active interrogator were not used in
calculating the threat range and bearing by the NUPAS algorithm.
However, since the replies to the on-board interrogator give a
good measure of slant range to the target, the slant range derived
from them is also shown on the plots for comparison with the other

values obtained for range.

On the plots of separation distance, the values derived from
the active interrogations are indicated by circles. They are
shown for every value of time at which an active interrogation
burst received a target report.

The values of slant range and bearing computed from the ARTS
data are shown at the time of the ASR-4 main beam passage past the
BCAS aircraft every time that valid target reports were received
from both the BCAS and the target aircraft during one antenna
rotation period. The values are indicated as short horizontal
lines crossing vertical lines which represent the (approximate)
90% confidence intervals for these quantities. The derivation
and significance of these error bars are discussed in Appendix G.

The slant range and bearing to the target computed by NUPAS,
i.e., the BCAS computed positions of the threat aircraft, are shown
in the figures as small x's or inverted v's, The inverted v's are
used when the configuration of the aircraft relative to the radars
is such that the available pair of radars does not meet the
criteria of a '"good" radar pair as currently defined within NUPAS,.
The x's are used otherwise, It may be observed that the criteria
for "good" radar pairs are evidently more stringent than they need
be, since the range and bearing calculations do not appear to be
noticeably worse when the radar pair does not satisfy them.

The range and bearing to other are computed for every instant
of time for which a target report is received - i.e., at the time
of main beam passage of either of the locked radars. No filtering,
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smoothing or extrapolation of any kind is performed on the
measured values except for Figures 5.2-10a to 5.2-12a of the
differential azimuth and TOA. Each calculation is based on the
values of own azimuth, differential azimuth, and TOA just obtained
for one radar at the instant for which range and separation are
computed and on the most recent values of these parameters obtained
for the other locked radar. The values from the other radar are
those of an observation at some instant in the past, descriptive
of the aircraft positions at the earlier instant. Values older
than 10 seconds were never used. In general, unless there was a
radar rotation period during which no target report was obtained
by the BCAS system for the target being tracked, the calculation
was based on a pair of target reports separated in time by between
0 and some 4 seconds (one radar rotation period).

The relation between the aircraft configurations, the BCAS
system measurements, and the calculations based upon them is
extremely complex. There is no simple way to express the effect
of this time difference in the observations. It may be noted in
the figures that there are instances when two range and bearing
solutions are given close together in time. Then the earlier is
based upon the measurements based on radar A at that instant and
the measurements based on radar B made almost a full antenna rota-
tion period previously. The latter is based upon the newly updated
radar B measurements and the radar A measurements made at the
earlier instant - i.e., upon a set of measurements made close

together in time,.

It may be observed that the values at the second instant
tend to be better - i.e., closer to the presumably correct value
that may be deduced by considering the general trend of the data
and the ARTS and active radar measurements. On the other hand, the
‘errors due to the time interval between observations are never very

large.

Computed range and bearing values for good geometries are on
average 300 feet rms and .3 degrees rms respectfully. Some improve-
ments in these values are expected from better data smoothing and
extrapolation. It may be observed that the passive BCAS could not
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follow the threat aircraft at the time of the closest approach
during the encounters flown, but that the ARTS system could not
do so either. The active system could track threat range
continuously.

Prior to November 19, 1976 there was an error in the BCAS
own azimuth computation program which resulted in large transient
oscillations in recorded "own azimuth" whenever radar lock was
newly acquired. This has now been corrected. Unfortunately the
effects of this error tend to appear frequently in the data for
flights involving the "rotating daisy'" flight patterns. The air-
craft tend to bank sharply and lose radar lock at the ends of
the petals. Radar reacquisition occurs near the beginning of the
encounter run, and the transient in the azimuth value does not die
out for several minutes. The nature of the transient is seen in
Figure 5.5-1 to 8 and the effects on the computed range and bearing
in Figures 5.2-12, 5.2-15, 5.2-18 and 5.2-19.

5.3 TOA MEASUREMENT ACCURACY

The accuracy of the BCAS TOA measurements was assessed by
comparing the TOA's measured during a series of flights past the
fixed transponder in the Mizpah fire tower with values of the
TOA's predicted from the relative positions of the BCAS aircraft
and the fire tower. These positions were simultaneously obtained
by the NAFEC ARTS III system and the EAIR tracking radar system.
The ARTS system measured both the aircraft and the tower trans-
ponder positions once every rotation period. It may be noted that
the BCAS system measured the TOA of the transponder signals that
were identically the same as those that the ARTS III system used to
establish the transponder location. The EAIR system tracked the
aircraft only. The position of the tower used in predicting the
TOA's (and the differential azimuths of Sections 5.2.3) was the
surveyed position. The results of the tests are given in Table
5.3-1 (Appendix F, supporting data) and Figures 5.3-1 - 5,3-8,
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TABLE 5-3.
SYSTEM MEASUREMENTS

DIFFERENCES BETWEEN TOA'S MEASURED BY BCAS AND PREDICTED FROM GROUND

RUN ARTS TI1T EAIR
Number Sample Sample Number Sample Sample
of Mean Std. of Mean S5td.
Number Samples ( Sec.) Dev. Samples ( Sec.) Dev.
2 13 -.390 . 865 - - -
3 62 -.016 1.336 78 .034 .121
4 26 -.225 .926 33 .418 .084
5 69 .649 1.676 88 .295 .098
6 38 .352 .480 43 .393 137
7 56 -.378 .415 75 .308 .093
8 17 -.320 1,012 35 .340 .116
9 21 -.,106 L1772 59 274 .088
10 10 .934 2,570 24 .382 .071
11 69 -.397 .282 83 .325 .105
TOTAL 381 1.154 518 .341 .113




There is an average difference of 0.341 microseconds between
the measured TOA's and the TOA's predicted on the basis of EAIR
measurements, but the RMS variation (i.e., the standard
deviation) of this observed difference is only 0.113 microseconds.
Since the EAIR and the BCAS systems are totally independent, this
implies that there is some systematic bias in arriving at the value
of the TOA in at least one of the systems, but that the random
variation in the measurements is quite small. It may be noted that
within the BCAS system, TOA is quantized to intervals of 0.145
microseconds. This quantization by itself introduces a random RMS
error of about 0.05 microseconds. Since there is also some random
variation in the EAIR measurements which contributes to the random
element in the calculated TOA differehces, it may be concluded that
the RMS value of the random variation in the measured TOA's due to
factors other than quantization noise is less than 0.1 microseconds.

Comparing the measured TOA's with the TOA's computed from the
ARTS III measurement, one does not observe any statistically
significant mean difference between them (i.e., no system bias).
However, the variance of the difference is quite large. The
standard deviation (i.e., the RMS value of the random component) of
the difference is seen to be 1.154 microseconds. Since no random
fluctuation was found in the BCAS - measured TOA's when compared
to the TOA's computed on the basis of the independent EAIR system
measurements, it must be concluded that this variation is in the
ARTS measurements alone.

The measurements analyzed here were made for TOA's of signals
from a stationary transponder to a moving BCAS aircraft. TOA's
from a moving target to a moving BCAS system are plotted in
Figures 5.2-1, 5.2-4 and 5.2-7. Quantitative measures of accuracy
have not been computed, since the EAIR system cannot be used to
track two aircraft simultaneously and since the values derived
from ARTS measurements themselves appear to be significantly less
accurate than the BCAS measurements. llowever, inspection of the
figures indicates that the accuracies are comparable to those
for the stationary target.
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The measurements taken initially with a fixed target were
repeated on January 6, 7, 1977 when all improvements had been
incorporated in the BCAS software. These results are shown in
Table 5.3-1 and Figures 5.3-9 - 5.3-18 and are considered as
representative for assessing TOA measurement accuracy.

TABLE 5-4. TOA DIFFERENCES IN MICROSECONDS BETWEEN BCAS
MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR
MEASUREMENTS

Run # N m s2
Outbound
1 53 .238 .042
5 58 .220 .024
9 59 .240 .027
(1,5,9) 150 .233 .030
Inbound

2 58 .169 ,018

6 55 .197 .012
10 63 .209 .017
(2,6,10) 176 .192 .016

N = number of samples in set
m = sample mean of data in set
s

2= sample variance of data in set

5.4 DIFFERENTIAL AZIMUTH ACCURACY

The accuracy of the BCAS measurements of differential azimuth
was evaluated on the basis of the data gathered on the same test
flights past the Mizpah fire tower on November 9, 1976 as were
used for evaluating TOA measurement accuracy. The results of the
test are presented in Table 5-5 and Figures 5.4-1 - 5.4-8, It
is seen that the mean difference between the BCAS computed
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. TABLE 5-5,

DIFFERENCES BETWEEN DIFF

FROM GROUND SYSTEM MEASUREMENTS

ERENTIAL AZIMUTH MEASURED BY BCAS AND PREDICTED

RUN ARTS 111 EAIR

Number Sample Sample Number Sample Sample

of Mean Std. of Mean Std.

Number Samples (degrees) Dev, Samples (degrees) Dev,

2 13 .019 .275 - - -
3 62 -.212 .398 78 -.213 .403
4 26 -.210 471 33 -.098 .254
5 69 -.061 .293 88 -7.053 .354
6 38 -.206 .391 43 -.092 .223
7 56 -, 044 .428 75 -.064 .374
8 17 .051 .433 35 .006 .387
9 21 .157 . 547 59 .214 .492
10 10 -.145 .462 24 .005 .506
11 69 -.209 .356 83 -.152 .193
TOTAL 381 -.117 .403 518 -.0676 .362




differential azimuth and the DAZ calculated from EAIR data is 0.07
degrees, and the sample standard deviation is 0.36 degrees. The
mean difference between BCAS and ARTS values is 0.12 degrees,

with a standard deviation of 0.40 degrees. See Table 5-6 for
supporting data.

TABLE 5-6. DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS
MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR

MEASUREMENTS
JTIDS Off
Run # N m 52
OQutbound
1 53 -.061 157
5 58 -.125 .077
9 59 -.065 .129
(1,5,9) 170 -.084 .119
Inbound
2 58 -.107 111
6 55 -.101 .079
10 63 -.168 .114
(2,6,10) 176 -.127 .102

N = number of samples in set
m = sample mean
sZ= sample variance

Analysis performed at TSC showed that DAZ computations could
be in error up to 0.87 degrees. In performing the computations,
the BCAS software utilizes only the most significant half of the
double length interrogation time.Thus up to 9.5 ms may be truncated
from the computations, which for the ASR-4 (scan period: 3.934
seconds) radar would result in such stated errors,
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Quantization noise of this magnitude introduces random error
with an RMS value of about .3 degrees.

Since the differential azimuth is determined by calculating the
difference between the centroids of two groups of transponder re-
plies to ATCRBS interrogator pulses that are emitted approximately
every 0.1 degree of antenna rotation, it is seen that the BCAS
accuracy achieved is close to the theoretic optimum. It may be
noted that ARTS III RMS error in measuring differential azimuth is
about .4 degrees (See Appendix E.)

The calculated mean and RMS differences given in Table 5-5
apply to the case of a moving BCAS system measuring its differential
azimuth with respect to a stationary target.

Comparison with Figures 5.2-3, 5,2-6 and 5.2-9 shows that
essentially the same results are obtained when both the BCAS system
and the target are moving.

DAZ measurements were repeated with all software modifications
incorporated and are shown in Table 5-6 and Figures 5.2-9 -
5.2-18.

5.5 OWN AZIMUTH

The BCAS software used to smooth the own azimuth measurements
contained an error which was not found and corrected until
November 19, 1976. The error had several effects. The filtered
{smoothed) value of own azimuth, if it converged at all, contained
a large transient (a damped oscillation) which started at the time
of radar lock and decayed over a period of several minutes, reaching
peaks of more than 20 degrees. (See Figures 5.5-1-- 5,5-8.)

Even after the transient had decayed, there remained a constant
offset of some 3 degrees between the true and the calculated values
of own azimuth.

The software error giving rise to this problem has now been
corrected. Figures 5.5-9 and 5.5-10 show comparisons of own azimuth
values computed by BCAS (with the corrected program) and derived
from EAIR measurements.
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It is seen that there is essentially no error left in the
own azimuth computations in the steady state. It remains to be
verified that the transient error following upon radar lock-up has

also been removed.

5.6 RECEIVER SENSITIVITY MEASUREMENTS

In order to determine the maximum effective range at which
SLS pulses and main beam pulses can be received without breaking
the radar lock, the following parameters were measured,

SLS hits x 100

1. %5tal No. of SLS ~ quality of radar lock in %

2. Main beam hits

3. Number of uncorrelated radars

4., Fruit number/scan

5. Radar Lock Details: coastings, firm lock, etc.
6. Azimuth measurement.

Three independent flight tests were conducted under the fol-
lowing conditions:

Date Altitude Rec. Sensitivity " Range of Detection
(ft) (dbm) (n.mi.)
5/6/76 13.0K -90 (SLS) 120nm outbound
-60 to -70 (MB) 125nm inbound
12/8/76 18.8K -90 (SLS) 100 nm (typical)
-65 (MB)
12/27/76 21.0K -90 (SLS) 127 nm outbound
-70 (MB) 118 nm (typical)
-65 (MB) 100 nm 80% count
good lock

Considering the overall performance, it appears that optimum
receiver sensitivity for the BCAS would be -90dbm for the SLS
pulses and -65dbm for the main beam pulses.
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A convenient range of operation for the BCAS system would be
from 10 to 100 n miles, based on the receiver sensitivity settings
and 150 watts peak power level at the ground interrogation site.
The SLS and North pulses radiated on the onmi pattern can be detec-
ted up to distances in excess of 150 n miles. However, the main
beam interrogation pulses radiated with 21 db antenna gain are
detected typically up to 120 n miles for the -65 dbm receiver
threshold.

5.7 NORTH PULSE XIT INTERFERENCE

Tests were performed to assess the effects of the presence of
the north pulse kit on the operation of the ARTS III radar system,
The nature of the test was to operate the ASR-4 system at NAFEC for
a period of 112 minutes, alternatively turning the north pulse kit
on and off at one minute intervals,

Statistics on ARTS III performance were gathered during each
such period. The quantities which were considered to be of most
interest and which were used in the subsequent analyses were the
number of replies per target per scan (number of hits) and the run
length of the sequence of transponder replies receiver by the ARTS
IIT radar.

The averages and standard deviations of both these quantities
were computed in each interval. Adjacent intervals were paired, and
comparisons were made within each pair between the interval with the
bits on and off, It was found that the average number of hits was
greater with the bit off in 35 of 56 cases. Also the average run
length was greater in 35 of 56 cases (not, in general, the same
cases). These results are significant at the 2.5% level, i.e, there
is no more than 2.5% probability that they are due to chance alone,
The size of the effect however, is small. The observed average
decrease in both the run length and the number of hits was on the
order of 0.1, which may be compared to run lengths and average
numbers of hits on the order of 18, with standard deviations on the
order of 3,
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5.8 HIGH RATE OF ACTIVE INTERROGATION

Tests similar to the north pulse interference tests were
conducted to assess the effects of active interrogation in air-
craft upon ARTS performance. The BCAS interrogator operating
at 300 interrogations/second was alternately turned on and off
at 1 minute intervals. ARTS performance measures were compared in
18 pairs of adjacent intervals. The average number of hits with
the interrogator on decreased in 14 of 18 cases. The average
target run length decreased in 12 of 18 cases. These results are
significant at the 2.5% and the 12.5% level, respectively. Again,
the observed differences themselves were small, amounting to 0.36
in the average number of hits.

5.9 X & D1 PULSE ANALYSIS

5.9.1 Background

Co-altitude threats in the semi-active Beacon Collision
Avoidance System are handled by means of '"tie-breaker logic'".
One subsystem of the BCAS equipment is a standard ATCRBS trans-
ponder which emits X and D1 pulses within the Mode C and an X
pulse within the Mode 3/A reply message upon command from the on-
board BCAS central processor. These pulses (X and Dl) are cur-
rently not designed for use in ATCRBS and have been authorized
for use for BCAS testing. The pulses shall determine the direction
of a potential maneuver of the BCAS equipped aircraft. The pre-
sence of these pulses in Mode 3/A and Mode C replies indicates the
direction of maneuvers as follows:

X4 XC ch

0 0 0 no threat

0 0 1 threat-fly straight and level
0 1 0 dive

1 1 1 climb

1 0 0 turn left

1 0 1 turn right
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X Xc D1,
1 1 0 turn left and change altitude
1 1 1 turn right and change altitude.

5.9.2 Discussion

A reply analysis routine was implemented to process ARTS III
Data Extraction Tapes for Mode C containing X and D1 pulses and
Mode 3/A replies containing the X pulse. Although operational
ATCRBS transponders do not use these pulses, the frequency of their
erroneous use due to possible garbling, reply interleave, fruit,
and the like was deemed worthy of investigation. The program was
implemented to accumulate pertinent Mode C and Mode 3/A X and D1
pulse statistics, with the statistics being grouped in terms of
ungarbled and garbled replies.

5.9.3 Analysis

Table 5-7 depicts four 10-second intervals of reply data.
These data were collected during the March 24, 1976 ASR-§ North/
South Pulse Kit Installation Test.

The summary report (see Table 5-7) lists for subsystem 1 or
2 (in this case, subsystem 1 is the ASR-5), the total number of
replies received by ARTS III from the ASR-5 during the ten-second
interval, Mode C statistics including the number of replies
processed and the percentages of processed for each of the four
combinations of X and D1 pulses, and Mode 3/A statistics comprising
the number of replies of this type processed. In this instance,
since D1 is permissible for beacon code only, the two corresponding
percentages for the X pulses are depicted.

Table 5-7 shows the four combinations of the North/South
Pulse and the Defruiter (DEF) as follows:
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TABLE 5-7.

SUBSYSTEM 1 (ASR-5)

RUN #1

RUN #2

RUN #3

RUN #4

2784 Total Number of
Replies

Mode C (774 Replies)

Ungarbled Replies
D1 X Percent

0 0 99.483
01 .129
10 .129
11 .258

Garbled Replies (0)

Mode 3/A (2010 Replies) Mode 3/A (1749 Replie

Ungarbled Replies
X Percent
0 99.602
1 .398

Garbled Replies (0)

2472

Mode C (723 Replies)

Ungarbled Replies
D1 X Percent

0 0 100,000
00 .000
10 .000
11 .000

Garbled Replies (0)

Ungarbled Replies
X Percent
0 99.886
1 .114

Garbled Replies (0)

2350

Mode C (774 Replies)

Ungarbled Replies
D1 X Percent

0 0 97.028
01 .000
10 2,972
11 .000

Garbled Replies (0)

Ungarbled Replies
X Percent
0 99.937
1 .063

Garbled Replies (0)

2927

Mode C (960 Replies

Ungarbled Replies
D1 X Percent

0 0 95.417
01 .000
10 4,583
11 .000

Garbled Replies (0)

s) Mode 3/A (1576 Replies) Mode 3/A (1967 Replies)

Ungarbled Replies
X PERCENT
0 100.000
1 .000

Garbled Replies (0)




RUN # KIT DEF MIN TMAX
1 OFF ON 11/17/50 11/18/00
2 ON ON 11/18/10 11/18/20
3 OFF OFF 11/23/00 11/23/10
4 ON OFF 11/23/40 11/23/50

Runs 1 and 2 (i.e., with the defruiter ON) depict data that is
representative of the ATCRBS environment as ATRS III sees it. As
shown in these tables, percentages of D1 and X pulses for ungarbled
Mode C replies are 0.4% and 0%, respectively, with percentages of
X pulses for ungarbled Mode 3/A being 4.0% and 0.1%, respectively.

Runs 3 and 4 (i.e., with the defruiter OFF) contain higher
percentages of D1 and X pulses usage then the first two tables.
These data, perhaps may be more representative of the ATCRBS environ-
ment as the BCAS system sees it. Corresponding percentages for
Mode C and Mode 3/A for these tables are 3.0% and 4.6%, and 0.1%
and 0, respectively.

Table 5-8 depicts data that were collected during the May 12,
ASR-7 North/South Pulse Kit Installation Test. Similarly, each
run is a 10-second interval representing the four combinations of
the Kit and the Defruiter states as follows:

RUN_t XIT DEF. TMIN TMAX
5 ON ON 10/16/00 10/16/10
6 OFF ON 10/20/00 10/20/10
7 OFF OFF 10/23/00 10/23/10
8 ON OFF 10/25/00 10/25/10

Unlike the ASR-5 radar, the ASR-7 radar did receive garbled
replies for the four combinations of tests comprising both Mode C
and Mode 3/A replies. The associated statistics for X and D1 pulses
usage are substantially higher for the ASR-7 than they were for the

ASR-5. This phenomena may be attributable to multipath associated
with the ASR-7 site.
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TABLE 5-8.

SUBSYSTEM 2 (ASR-7)

RUN #5 RUN #6 RUN #7 RUN #8
2180 Total Number of 2304 10411 10840
Replies
Mode C Mode C Mode C Mode C

(615 Replies)

Ungarbled Replies
(595)
X Percent
98.824
.168
1.008
.000

oo -
— OO

Garbled Replies

Mode 3/A (1565
Replies)

Ungarbled Replies
(1495)
X Percent
0 99.599
1 .401

Garbled Replies
(70)
X Percent
0 88.571
1 11.429

(645 Replies)

Ungarbled Replies
(618)

X Percent

0 100,000

.000

.000

.000

D

R =y
o

Garbled PReplies
(27)
Percent
88.889
11.111
.000
.000

D1
1

O OO

0
1
1

Mode 3/A (1659
Replies)

Ungarbled Replies
(1599)
X Percent
0 99.875
1 .125

Garbled Replies
(60)
X Percent
0 75.000
1 25.000

(3388 Replies)

Ungarbled Replies
(2713)

X Percent

83,856
1.696

13.085
1.364

D

OO
—_O O

Garbled Replies
(675)
Percent
66.963
7.852
17.037
8.148

D

N
OO ¢

Mode 3/A 7023
Replies)

Ungarbled Replies
(5573)
X Percent
0 97.416
1 2,584

Garbled Replies
(1450)
X Percent
0.84,483
1 15,517

(3652 Replies)

Ungarbled Replies
(2823)

X Percent

85.689
1.452
11.761
1,098

D

- O
—o O

Garbled Replies
(829)

D1 X Percent

0 0 70,929

01 9.650

10 14.234

11 5.187

Mode 3/A (7188
Replies)

Ungarbled Replies
(5571)
X Percent
0. 86.841
1 3.159

Garbled Replies
(1617)
X Percent
0.86.889
1.13.111




5.9.4 Summary and Conclusions

Reply data from an operational ARTS III site were processed to
calculate X and Dl pulse utility. The X and D pulses were detected
successfully except when two targets were close together. In such
cases, ARTS III may associate the X and D bits with the replies
from the wrong targets.

5.10 F2 TRACKING

5.10.1 Self-Garble Interference

When the BCAS aircraft is within the interrogating beam of
an ATCRBS radar, the presence of a reply from its own on-board
transponder will prevent BCAS receiver from properly receiving any
transponder replies from other aircraft that might arrive at the
BCAS before its own transponder has ceased transmitting. This
condition is referred to as self-garble interference.

The BCAS receiver has teen designed to receive replies partly
obscured by self-garble interference. The technique employed is
called F2 tracking. The principle of F2 tracking is the following:
The OWN response may garble the first part of OTHER's received
reply, but the later part of the reply will arrive clear. The
reply can not be received in the ordinary manner because (a) the
initial framing pulse (F1l) is obscured by the self-garble and
(b) because some of the code bits (pulses) may be obscured, so
that the identity or altitude can not be properly decoded.

When the receiver is in the F2 tracking mode, the assumption
is made that the beginning of a transponder reply from OTHER may
have arrived at the BCAS receiver during the period that the OWN
transponder was replying. Any pulse that arrives immediately after
the conclusion of the own reply then is assumed to be the con-
cluding part of such a reply. In particular, any pulse arriving
during the 20.3 microseconds following the conclusion of the reply
from the OWN transponder is assumed to be an F2 bracket pulse
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concluding a reply whose first part, and specifically the F1
bracket pulse, was obscured. Therefore, an artificial Fl pulse is
inserted into the detected bit stream 20.3 microseconds preceding
the assumed F2 pulse. The subsequent reply detecting logic then
detects two pulses at the proper bracket spacing and treats the
combination of the presumed F2 pulse, the artificial F1 pulse,

and any intervening pulses that may have been detected as a reply.
The TOA of this '"reply" is determined by the timing of the "F1"
pulse. Since the code bits of such an artificially created reply
are not valid, the logic tags this as an F2-tracking reply. (The
tag appears in the reply listing (Figure 5-1) as a one in the
first digit of the 6-digit group showing the transponder code). 1If
in fact an actual reply is partially obscured by self-garble, but
a number of the code pulses, as well as the F2 bracket pulse, are
received in the clear, an artificial F1 pulse will be created for
every such pulse received. The result will be that a whole burst
of partially overlapping replies will be decoded, all tagged as
artifical. If the self-garble condition persists for a number of
radar interrogations, there may be enough of these artificial
replies to result in target declarations. Targets so declared will
have the identity and altitude codes indicated as garbled.

A group of replies including replies obtained by F2 tracking
will be formed into a target report with a valid identity code
only if there are at least four mode A (identity) replies received
in the clear. Target reports containing replies generated by F2
tracking are associated with target tracks (record correlation)
only if this condition is met.

This, in general, will happen if part of the burst of replies
from another aircraft are subject to self-garble and part are
received in the clear. The artificially restored self-garbled
‘replies included in the target report insure that the full burst of
replies from the target aircraft is considered in determining the
target centroid - i.e. in establishing the correct differential
azimuth. The extraneous replies and targets that may be created
by falsely assuming some code pulses to be F2 pulses are rejected
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by later screening steps in the BCAS logic, so that no false
alarms will be created.

5.10.2 Example of F2 Tracking

The operation of the F2 tracking algorithm was verified by
examining reply level BCAS data collected on November 9, 1976.
The flight test consisted of flying radial patterns near the Mispah
fire tower. The transponder in the fire tower was replying with
the identity code 0777. For this code, the train of pulses is
shown in Figure 5-2.

Pulse Width 0.45u's
Pulse Spacing 1.45u's

SPI
F A Ay Ay By B, By Fa
c c c X D D D
1 2 a 1 2 4 F*4'35
u's
1090 MHz

TRANSPONDER REPLY

FIGURE 5-2, CODE (€777 MODE 3/A REPLY

A timing diagram of self-garbled interference and F2 tracking
is shown in Figure 5-3. The sampling of the replies received and
the resulting TOA histograms and target reports generated is shown
in Figures 5-4 to 5-6. A detailed bit-by-bit reconstruction of
the replies registered to the mode 3/A interrogation at a
differential azimuth of 1.95° right is shown in Figure 5-5.
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Period of own transponder reply
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FIGURE 5-3. TIMING DIAGRAM OF SELF-GARBLE INTERFERENCE AND F2 TRACKING
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The TOA of the replies from the test transponder is 14.79
microseconds. Thus only the last 14.79 microseconds of the reply -
i.e., the last 10 pulse positions are received in the clear.

(See Figure 5-6.) For every bit received in the 20.3 microsecond
interval following the OWN reply, an artificial F1 pulse is
generated. The code bits corresponding to every such bracket are
decoded (see Figure 5-1). The resulting replies are included in
the TOA histogram (Figure 5-5) and target reports are generated
according to the usual rules (Figure 5-3). Only the proper target
report is found not garbled and associated with a global track.
Thus proper operation is demonstrated.

5.11 FRUIT MEASUREMENTS

The Fruit Susceptability program was exercised to process
BCAS type 3 messages (i.e., beacon reply data) for runs 1 through
12 of JTIDS testing. Six of these runs, that is when the JTIDS
system was OFF, are germane to this report. The results of
the data reduction program for these runs are tabulated in Table
5-9.

For the purpose of this discussion, fruit replies are defined
as those transponder replies received by BCAS which the software
was unable to correlate to target reports.

This reply/target report correlation was performed via the
mechanism of histogram tables (see Figure 5-3), requiring the
receipt of a minimum of six replies to fall into no more than three
contiguous TOA bins, with each TOA bin having a granualrity of
0.145u seconds.

As shown in Table 5-9, the data depicted are for one radar,
the ASR-5, and are averages on a per scan basis, The fruit rate
varies between 51.4% and 64.7%. The total number of replies,
again on a per scan basis, varied between 121.9 and 143.6.

Figure 5-3 depicts the replies received by BCAS for one
scan in a histogram table format. As seen in the figure, each fruit

reply generally constitutes a single entry in one of the many TOA
bins.
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TABLE 5-9. FRUIT AND TRANSPONDER REPLIES PER SCAN
Fruit Replies
Run_# N m st m s? 4§ of Fruit
1 98 73,765 454,244 143,612 999,186 51.36%
2 127 78.315 1015.761 129,291 1447.194 60,57%
5 100 86.050 525.372 145.880 944,825 58.99%
6 105 78.190 287.031 131.114 733.760 59.64%
9 93 69.656 542,191 127.731 784.952 54,53%
10 87 78.920 642.420 121,897 808.834 64.74%




5.12 NORTH PULSE DETECTION

During JTIDS testing, North pulse measurements were obtained
for radial runs in the vicinity of Mizpah. The North/South pulses
were transmitted for 32 consecutive scans beginning at North cross-
ing and another 16 pulses were transmitted every other scan begin-
ning at South crossing for a total of 48 pulses per scan.

The average number of North pulses (see Table 5-10) re-
ceived per antenna rotation is approximately 47 within a deviation
of approximately 5, The standard deviation appears to vary with
time due to causes we cannot explain; i.e., it is significantly
different for different runs.

It follows from the observed mean and standard deviation that
some North pulses are not being detected and in other instances
noise is being accepted as North pulses.

5.13 JTIDS INTERFERENCE MEASUREMENTS WITH BCAS

5.13.1 Introduction

Special flight tests were conducted to obtain data on the
compatibility of JTIDS (Joint Tactical Information Distribution
System) with the semi-active model of the Beacon Collision Avoidance
System (BCAS). This mode of BCAS requires the transmission of
antenna-position pulses (north and south) from ATCRBS ground inter-
rogators. Since no simulator exists for this purpose, the flight
tests were, of necessity, conducted in the FAA-established BCAS
developmental test area around Atlantic City, N.J., where a number
of interrogators have been modified to produce azimuth reference
pulses. This area does not represent a worst-case BCAS environ-
ment. During the BCAS flight tests, the JTIDS transmitter was
‘operated in the wideband double-pulse 40%/40% mode with notch
filters installed at 1030 MHz and 1090 MHz. JTIDS peak power was
165 watts. The test plan and resulting measurements are contained
in Reference 3, |
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TABLE 5-10.

NORTH PULSES DETECTED PER

ANTENNA ROTATION

JTIDS Off JTIDS On

Run # N m _s? Run # N m s
1 101 45.059 9.076 3 129 47.698 15.962
2 129 48,550 10.647 4 153 47,576 14,437
5 101 46.336 11.346 7 107 46,252 25,261
6 110 46.127 45,305 8 89 46.933 56.626
9 96 48.771 10.642 11 81 46.148 5.292
10 117 48,103 32.868 12 99 46.253 8.950
TOTAL 654 47.033 21.539 663 46.927 28.856




This section provides a description of BCAS, particularly of
the measurements made by the system to track threat aircraft. In
addition, the statistical tests are described that were used to
assess the effect of JTIDS on BCAS signal-detection capability and

measurement accuracy.

5.13.2 Equipment Tested

When the JTIDS EMC (Electro Magnetic Compatibility) tests were
being conducted, the BCAS program was in the developmental stage
with the active and passive mode hardware undergoing flight tests.
The active and passive hardware were built using, to the maximum
extent possible, off-the-shelf equipment. They were built to
demonstrate the BCAS concept and were not representative of an
optimized design. The susceptibility of the BCAS passive mode to
a JTIDS signal environment was tested. The ATCRRS transponder
portion of the BCAS system was effectively tested under the ATCRBS
tests.

5.13.3 Applicability of Measurements to the Active Mode of BCAS

Identical 1090 MHz receiver front ends are employed in BCAS
for both the active and passive mode because the basic signal
structures associated with transponder replies to either BCAS
interrogations (active mode) or ATCRBS ground beacon interrogations
(passive mode) are identical. Therefore, the results of the BCAS
passive tests can, to some degree, be extrapolated to the active
mode of BCAS.

5.13.4 Flight Tests

Test flights were flown at NAFEC on January 6 and January 7,
1977, to evaluate the effects of JTIDS signals on the BCAS system.
The BCAS-equipped aircraft was an FAA-owned Grumman Gulfstream
(G-159) test-bed aircraft from NAFEC. The JTIDS-equipped aircraft
was an Air Force Flight Inspection C-140 Jetstar. The aircraft
were flown in tandem at a vertical separation of 1000 feet with
a top-mounted antenna on the lower aircraft and a bottom-mounted
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antenna on the upper aircraft to maximize coupling as described
in Reference 3.

Accuracy of Measurements. The primary question of interest
here is whether the accuracy in the measurement of TOA and DAZ is
affected by the presence of JTIDS signals. Two series of flights
were flown. 1In the first set of runs, the BCAS aircraft, tracked
by the C-band Extended Area Instrumentation Radar (EAIR) at NAFEC,
flew past a fixed ATCRBS transponder (Mizpah Tower). The BCAS
system recorded six types of data, including the differential

azimuth between the BCAS aircraft and the fixed transponder as
seen from the Air Traffic Control Beam Interrogator (ATCBI-3),
which is collocated with the NAFEC ASR-5, and the TOA of the
replies to the ATCBI-3 from the fixed transponder. On alternate
sets of outbound and intound runs, the JTIDS was turned on. The
measured values of TOA and differential azimuth were compared with
predicted values computed from the geometry, as determined from
the surveyed positions of the radar and transponder and the
position of the aircraft as measured by the EAIR radar. On the
same runs, statistics were gathered on the number of azimuth
reference pulses per antenna rotation that were detected by the
BCAS system and the number of fruit replies received.

Quality of Radar Lock. The primary question in this case is
whether JTIDS signals affect the ability of BCAS to detect radar
mainbeam and SLS signals. Longer runs radially away from and

toward the radar were flown throughout this portion of the test.
Counts of the mainbeam and SLS pulses were taken for each scan of
the ATCBI-3 while the JTIDS was turned on or off every thirty
seconds. The radial runs were flown in from or out to the
acquisition/loss-of-lock range.

5.13.5 Analysis

TOA Measurements. Measurements of the TOA of the signal from

the fixed transponder in the Mizpah Fire Tower were made during 12
radial runs past the tower, six inbound and six outbound. The
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JTIDS transmitter was on for half the runs and off for the other
half. The BCAS-equipped aircraft was tracked by the C-band EAIR
radar. The expected TOA at the time of each ATCBI-3 mainbeam pas-
sage was computed, using the kn own positions of the ATCBI-3 and

the fixed transponder and the position of the BCAS aircraft as
measured by the EAIR radar. The differences between the predicted
(computed) TOA and the measured TOA were calculated and their sample
means, m, and sample variances, 52, were tabulated. No EAIR measure-

ments were taken during Run 12 (see'Table 5-11).
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TABLE 5-11. TOA DIFFERENCES IN MICROSECONDS BETWEEN BCAS MEASUREMENTS AND VALUES
PREDICTED ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT
A 40%/40% TIME SLOT DUTY FACTOR

voT

JTIDS 0Off JTIDS On
Run # N m 52 Run # N m 52
Outbound
1 53 .238 .042 3 57 .205 .024
S 58 .220 .024 7 51 .242 .027
9 59 .240 .027 11 53 .242 .028
(1,5,9) 170 .233 .030 (3,7,11) 161 .230 .026
Inbound
2 58 .169 .018 4 60 171 .013
6 55 .197 .012 8 56 .187 .015
10 63 .209 .017 12 (no EAIR data)
(2,6,10) 176 .192 .016 (4,8) 116 .179 .014
N = number of samples in set
m = sample mean of data in set
52= sample variance of data in set




The measurements show that, independent of JTIDS, there was a
difference between measurements on the inbound and outbound runs,
Since each point in space at which a measurement was made was unique
and had no precise counterpart on any other run, there is no reason
to treat the runs as closed entities to be considered separately.
In view of this, it is appropriate to test separately the inbound
data and the outbound data. Thus, all measurements made under the
same set of circumstances (e.g., outbound with JTIDS off, Runs 1, 5
and 9) were aggregated. The question of interest is whether JTIDS
adversely affects TOA measurements, i.e., tends to increase the
variance., Thus a one-tailed F-ratio test is appropriate (Natrella,
Section 4-2,2),

If Ry and NB are the number of measurements in each of the
two sets, l-a is the confidence level of the result, and SAZ and
sB2 are sample variances of these two measurement seéts, then the
ratio of the sample variances, F, is computed by

_ 2 2 -
F = Sa /sB 5.13-1

If F > Fl—a for NA-l and NB-l degrees of freedom, then the vari-
ability of the measurements with JTIDS on exceeds the variability
of measurements when JTIDS is not present. Otherwise, there is
insufficient evidence to assert that JTIDS affects the measurements.
The level of significance of the test was set at .05, i.e., the
probability of falsely concluding that a difference exists.

F,_, 1s the 1-a percentile of the F distribution with Hp-1 and

NB-l degrees of freedom, i.e., the 95% confidence level.

It is to be noted from Table 5-11 that, in fact, the
variance is less with JTIDS on than with JTIDS off in both
instances. (The same is true of the mean differences between
measured and predicted TOA measurements, i.,e., the systematic
bias error.) The computed F values for the outbound and inbound
data are 0.867 and 0.875, respectively. The critical F value
for a 95% confidence level was found to be approximately 1.23.
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Therefore, clearly, the results lead to the conclusion that
JTIDS does not increase the variability.

Differential Azimuth Measurements., The differential azimuth

measurements were made at the same time as the TOA measurements,
and the differences between measured and predicted differential
azimuths were calculated in the same way as TOA differences., They
are shown in Table 5-12. The difference between the predicted
azimuth and measured azimuth, as a function of antenna scan were
computed.

Again, there is a tendency for the sample variances to be
greater on the outbound legs than on the inbound, though the dif-
ference is not as great as in the case of the TOA measurements.

It was nevertheless decided to analyze the two cases separately.
Again a, the significance level of the tests, was set at 5%, and a
test was made to determine whether there is reason to believe that,
with JTIDS on, the random errors in measuring differential azimuth
are greater than with JTIDS off. The computed F values for the
outbound and inbound measurements were 0.874 and 0.921, respectively.
Again, the critical F value for a 95% confidence level was found to
be approximately 1.23. Clearly, since the sample variance with
JTIDS on is actually smaller, the results of the test are that one
must conclude that the random errors in measuring differential
azimuth are not affected by JTIDS pulses.

Fruit. The number of fruit replies detected by the BCAS
(transponder replies received that the BCAS system could not
correlate with any target) was recorded for Runs 1 through 12,

i.e., the flights past the fixed transponder. The fruit reply

data are tabulated in Table 5-13. The data for Runs 2 and 4

are anomalous. When compared to the rest of the data, the variances
are excessively large. In addition, the mean number of fruit
replies per scan on Run 4 was 132, which is more than 40% higher
than the run with the next higher mean fruit rate, i.e., Run 11.

To avoid having any such extraneous values influence the results,
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* TABLE 5-12. DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED °
' ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT

DUTY FACTOR

L0T

JTIDS Off JTIDS On
Run # N m 52 Run # N m s2
Outbound
1 53 -.061 157 3 56 -.076 .152
5 58 -.125 077 7 51 -.149 .099
9 59 -,065 .129 11 53 -,139 .060
(1,5,9) 170 -.084 .119 (3,7,11) 161 -.119 .104
Inbound
58 -.107 111 4 60 -,.106 .111
6 55 -.101 .079 8 56 -.114 .075
10 63 -.158 .114 12 (no EAIR data)
(2,6,10) 176 -.127 .102 (4,8) 116 -.110 .094

= number of samples in set

N
m = sample mean
s 2

= sample variance



2.829 and |m;-my| was found to be 5.995. Since 5.995 is larger
than &, one must conclude that, with 95% confidence, there is
sufficient evidence to indicate significant difference in the

two mean fruit reply rates.

Thus it appears that the JTIDS signals did have some effect
on the number of fruit replies received by BCAS. lowever, since
the meaningful performance parameters of the system -- the TOA and
differential azimuth measurements -- do not appear to be affected
by JTIDS, the change in fruit rate is of no practical significance,.
For instance, the TOA measurements of the run with the highest
fruit rate were considerably better than the average for all runs.

Azimuth Reference Pulse Detection. The BCAS system continuous-

ly acquired the azimuth references pulses transmitted by the ATCBI-
3. The number of such pulses detected per antenna rotation period
was typed out on the system teletype for each rotation period.

These data for Runs 1-12 past the Mizpah Tower are shown in
"Table 5-14. No definite conclusion can be drawn from these data,
since there is too much BCAS system variability among runs. For
example, with JTIDS-off and the aircraft flying the inbound leg,
the variance is 10.65 on Run 2 and 45.31 on Run 6.

The radar emitted 48 pulses per rotation, 32 consecutively
after passing north and 16 on alternate interrogations after
passing south. Both misses and false detections may occur.

Misses and false detections during the same scan would offset each
other with respect to the number of detected pulses, Thus, the

net number of pulses received is, in itself, not a very good
indication of system performance, but no other measurable parameter
was available in the BCAS model tested.

v The overall net difference between the mean number of azimuth
reference pulses detected with JTIDS on and JTIDS off is slight

(= .90 per scan). The variance varies greatly from run to run,
both with JTIDS on and JTIDS off. No consistent pattern to this
variation is evident, as a function of either time or flight
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TABLE 5-14. AZIMUTH REFERENCE PULSES DETECTED PER ANTENNA SCAN WITH A JTIDS DOUBLE
PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR

JTIDS Off JTIDS On
2 2
Run # N m s Run # N m S
1 101 49,059 9.076 3 129 47.698 15.962
2 129 48,550 10.647 4 158 47.576 14.437
5 101 46,336 11.346 7 107 46.252 25,261
6 110 46.127 45,305 8 89 46.933 56.626
9 96 48,771 10.642 11 81 46.148 5.292
10 117 48.103 32.868 12 99 46,253 8.950
Total 654 47.832 663 46.927
N number of scans
m sample mean
s2 sample variance




direction. Thus, there is no satisfactory test for determining
the true influence of JTIDS on the number of azimuth reference
pulses received. The effect, if any, is small relative to the
inherent variability in the number of pulses detected scan to scan.

Mainbeam Hits. The second series of tests consisted of tandem
flights of approximately 200 nautical miles (see Reference 1),
with the JTIDS transmitter turned on and off for alternating

30-second intervals. One radar antenna scan immediately pPreceding
and one immediately following the instant that the JTIDS receiver
was switched on or off were disregarded in analyzing the data on
mainbeam hits. This was done to assure that mainbeam passage was
not associated with the wrong condition of JTIDS.

Examination of the plots (see Reference 1) of mainbeam hits
detected as a function of time shows that both the number of main-
beam pulses and the P2 SLS pulse ratio tend to increase as the air-
craft approaches the radar, and tend to decrease as the aircraft
flies away from the radar. This decrease continues until radar lock
is lost. No qualitative difference can be detected in the plots
associated with the intervals when JTIDS was on or off.

The data for Runs 16 and 18 are anomalous. The data shows
that, on Run 16, JTIDS-off data displays the maximum variability
measured for the baseline, while on the same run the JTIDS-on data
displayed the minimum variability measured for the test data. Run
18 was similar; however, this time the maximum variability was
measured for JTIDS-on data while the minimum variablitiy was dis-
played by the JTIDS-off baseline data. These two runs were ex-
cluded from the statistical tests. However, there is evidently a
great deal more similarity in the number of mainbeam hits sensed
during each run with JTIDS on or JTIDS off than there is between
runs (see Table 5-15), Accordingly, statistical tests were
performed on the results of each run separately. Two tests were
performed, the F-ratio test for equal variances and the generalized
two-sided t-test for equal means. The variability of the number of
mainbeam hits per mainbeam passage with JTIDS off and with JTIDS on
was compared. The first F-test at the level of significance
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o = .05 was used. The difference in the mean number of hits and
the effective degrees of freedom, f', were computed for each run;
then the generalized two-sided t-test at the level of significance

a = .05 was performed (Natrella, Section 3-3.1.2).

The data and the formal results of these tests are shown in
Table 5-15. At 95% confidence, a difference in the variability
of mainbeam hits with JTIDS off and with JTIDS on was found only
in Run 22. No significant differences in the mean number of main-
beam hits were found at the o = .05 significance level. Thus the
measures used indicate that JTIDS does not affect the ability of
BCAS to detect ATCRBS mainbeam interrogations.

Sside Lobe Suppression (SLS) Ratio. The ratio of the number

of side lobe suppression pulses detected by the BCAS system to the
total number transmitted per ATCRBI-3 antenna rotation was monitored
on the same flights in which the number of detected mainbeam pulses
were monitored. The same statistical tests were performed on the
means and variances to decide whether the JTIDS system influenced
the results. The F-test at the a = .05 level of significance was
used to test whether the variances of the measurements differed
significantly, and the generalized two-sided t-test at the a = .05
level of significance was used to compare the average number of SLS
pulses received per antenna rotation. The effective degrees of
freedom, f', was calculated for each run and the corresponding
table value for t gqg Was selected for the t-test computation. The
data is plotted in Reference 3 and the results are presented in
Table 5-16. The variance is significantly different on one run.
Therefore, the difference in the average number of SLS pulses
detected is declared to be statistically significant only on this
run since the other nine runs passed the tests. Hence, the tests

do not show any tendency of JTIDS to affect the number of SLS pulses
detected by the BCAS system.

Again, the plots of the data are more meaningful and informa-
tive. They show variation in the SLS ratio with respect to range
from radar, but no perceptible difference that can be associated
with whether JTIDS was on or off.

113



PIT

TABLE 5-15. NUMBER OF MAIN BEAM

HITS PER SCAN

JTIDS Off JTIDS On Statistical Results
Run # N m s2 N m 52 F-ratio f' [t-test
14 18 7.833 19.909 22 7.455 23.785 S 40 S
15 52 14.000 18.080 54 13.352 22.724 S 105 S
16 18 13.389 25.543 17 15.059 1.309 AD 19| AD
17 26 11.462 17.775 31 12.871 11.985 S 50 S
18 9 13.444 3.779 4 6.000 48.609 AD 3 AD
19 40 12.425 23.688 34 13.118 23.503 S 72 S
20 39 12.615 21.818 40 13.700 16.777 S 77 S
21 23 11.261 17.024 21 9.095 29.987 S 39 S
22 83 17.000 14.684 83 17.506 8.620 D 155 S

N = number of scans in sample level

m = sample mean

S = sample variance
AD= Anomalous Data

= Same Population

S
D = Different Population




TABLE 5-16. SLS RATIO FOR EACH SCAN WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40%
TIME SLOT DUTY FACTOR —

STT

JTIDS Off JTIDS On Statistical Results

Run # N m s? N m s* F-ratio| f'| t-test
13 25 | 58.084 635.242 30 62.011 565.679 S 52 S
14 18 | 81.380 5.449 22 82.077 17.775 D 35 S
15 52 | 63.217 635.695 54 62.066 571.121 S 105 S
16 18 | 65.547 554.085 17 75.163 107.081 S 24 S
17 26 | 29.142 698.809 31 40.047 653.723 S 55 S
18 9 | 58.863 154.928 4 26.064 388.326 S 5 D
19 40 | 53.409 608.116 34 53.529 724.740 S 70 S
20 39 | 52.375 857.143 40 50.015 787.925 S 79 S
21 23 | 45.035 908.661 21 47.856 454 .144 S 41 S
22 83 | 78.641 169.911 22 81.579 83.759 S 149 S

N = number of scans in sample
m = mean sample

s“= sample variance

S: Same Population

D: Different Population




5.13.6 Summary of Results

These tests attempted to determine the compatibility of JTIDS
with a future BCAS system. Since BCAS is still under development,
testing was limited to the Litchford semi-active system model. The
JTIDS transmitter was operated in the wideband double-pulse mode
with a 40%/40% time-slot duty factor and with notch filters instal-
led at 1030 MHz and 1090 MHz. The JTIDS system peak power was 165
watts.

The active system was not tested since the same equipment was
included in the ATCRBS tests and, therefore, the ATCRBS results can
be used as an indication of compatibility.

The results of the statistical analysis of the flight data from
the semi-active system indicate the following:

1. The presence of JTIDS does not affect the ability of
the BCAS to measure differential time of arrival (TOA)
or differential azimuth (DAZ).

2. The number of fruit replies was increased by 6 replies
per radar scan (77 to 83) when the JTIDS signal was
present; however, this did not appear to influence the
BCAS performance.

3. JTIDS had no significant affect on the mean number of
mainbeam hits or the side lobe suppression ratio.

For a more complete analysis, the reader should examine the
data plots in Reference 1. A visual comparison of the BCAS measure-
ments with JTIDS off and JTIDS on clearly shows that JTIDS does not
influence the BCAS system. For example, regardless of the JTIDS
condition, examination of the mainbeam data shows only that the
number of mainbeam pulses tends to increase as the aircraft
approaches the radar and to decrease as the aircraft flies away
from the radar. However, while there were no major areas of
interference, care should be taken in the development of the two
systems to insure continued compatibility.
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5.14 FALSE ALARMS/FALSE TRACKS AND MISSED ALARMS/MISSED TRACKS

Assessments for false alarms/false tracks and missed
alarms/missed tracks were made by comparing BCAS data with ARTS
I1I data. The ARTS III data extraction tapes were processed by both
the Flight History program and the Widened Azimuth Window program.
The BCAS tapes in turn were processed by the BCAS Detailed Process-
ing Programs. A brief discussion of these programs follows.

A flight history listing outputs (Figure 5-7) information
consisting of scan number, time, aircraft identification, beacon
code, altitude, range, azimuth, run length and number of trans-
ponder replies. These entries are in numberical ascending sequence
of scan numbers for the specific aircraft, with the aircraft ordered
in sequence by beacon code. The widened azimuth window program pro-
cesses ARTS 1II target report messages of aircraft that are pre-
sent in the widened azimuth window of BCAS. 1In this instance, it
processes ASR-4 radar target messages that are within a +18° window
of OWN. Figure 5-8 depicts a widened azimuth window output
listing. The output is on a per scan basis and contains beacon
code, time, range, azimuth, altitude, TOA, DAZ, range, bearing,
run length and number of transponder replies. The BCAS detailed
processing program listing, Figure 5-9, contains target report
information grouped on a per radar basis with global track data
interspersed. A list of abbreviations include:

SCAN: scan number
RID B: interval radar identification

TID: target identification

BCD: beacon code

NRP: number of transponder replies
TOA: time of arrival in p seconds
DAZ: differential azimuth

TAL: target's altitude

OAL: OWN's altitude

LTRN: local track number.
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FIGURE 5-7. FLIGHT HISTORY LISTING (CONTINUED)
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FIGURE 5-8., ARTS III WIDENED AZIMUTH WINDOW PROGRAM OUTPUT
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FIGURE 5-9, LCAS QUICK LOOK PROGRAM OUTPUT
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FIGURE 5-9, (CONTINUED)




Tables 5-17a through 5-17f enumerate just six of the runs
that were analyzed and contain entries of selected ASR-4 data of
OTHER as processed by BCAS detailed processing program and the
widened azimuth window program on a scan for scan basis. Informa-
tion in the table for BCAS includes scan number, DAZ, number of
replies, TOA, altitude difference, local track number and time.
Data from the widened azimuth window program consists of DAZ,

TOA, range, scan number, rTun length, number of transponder repies
and time.

It may be seen in the table entries that DAZ and TOA values of
OWN for BCAS and ARTS III are within acceptable tolerances, con-
sidering the inaccuracies associated with ARTS III positioning of
OWN and OTHER.

Tables 5-17a and 5-17b contain a number of false reports of
OTHER (i.e., target reports for a given scan, the second entry
for the scans identified by letter F) that were detected by BCAS
but were not evidenced in the widened azimuth window program
listing.

Further inspection of the detailed processing listings
( Figure 5-10 ) with the flight history listings, (Figure 5-7)
also shows reports for OTHER on the same scans (i.e., 2 target
reports from the same scan). However, ARTS III (see Figure 5-7)
indicates, for example, that OTHER ijs at an azimuth of 207.86",
with a false target report for OTHER appearing at 136.23° which is
well outside the +18° widened azimuth window. BCAS in turn detects
the false target (see Figure 5-9) but states that it is within
the +18° widened azimuth window. Additional tests in strong
multipath and a check on omni antenna radiating pattern alignment
with the main beam pattern may explain false target presence in
BCAS and ARTS III measurements.

Ahalysis of data reduction output listings indicated that
aircraft appearing within +15.0° of OWN as defined by ARTS III were
all accountable for with respect to those aircraft detected by BCAS
when locked to the ASR-4 radar. Acutally there were more aircraft
detected by ARTS III but these additional aircraft were outside of
BCAS's volume of interest due to either altitude or range
differences. The converse of this was also true, viz., there were

123
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FIGURE 5-10. MULTIPLE GLOBAL TRACKS OF OTHER
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SCAN #

F* 27 21

13

28 17

14

F 29 17

12

F 30 18

15

- 31 12
(3]

w 13

F 32 18

11

F 33 21

12

F 34 18

7

TABLE 5-17,

DAZ NRP
-15.80 15
-8.41 9
-15.95 15
-14.76 16
-6.35 9
-14.38 20
-15.92 15
-12.41 20
-12.40 18
-2.96 6
-14.67 12
-2.05 7

TOA
57.54

54.54

51.59

48.61

45.65

42.55

39.69

36.83

Alt.

Diff.

+600°"

+500°

+500'

+400"

+400°

+400°"

+300°

+300'

COMPARATIVE DATA ASR-4 VS. BCAS

LTRN
64

64

64

64

64

66

66

66

GLBTR
12/50/19.9

12/50/23.8

12/50/27.8

12/50/35.6

12/50/35.6

12/50/39.6

12/50/43.5

12/50/47.4

DAZ
-17.05

-16.17

-14.94

-14.06

-14.06

-12.48

-11.07

-10.64

¥F Talse target (i.e. multiple target of OWN) detected by BCAS.

11/18

RUN 1

TOA
58.09

54.97

51.43

48.31

48.31

42.39

38.98

36.91

RANGE

7.34

6.96

6.45

4.81

4.60

SCAN #

19

20

21

22

23

24

25

26

TIME

12/50/19.

12/50/23,

12/50/27.

12/50/30.

12/50/34.

12/50/38.

12/50/42.

12/50/46.

19

12

05

98

91

85

79

72



971

10

o~

v

DAZ
-15.60
-14.43
-14.88

-5.39
-13.04
-11.89
-11.91
-12.12
-10.31

-9.03
-4.42
-9.29
-5.15
-3.71
-0.42

NEP

19
18

9
14
15
14

TABLE 5-17.

TOA

53.
50.
48.

45.
42.
39.
45.
36.

14.
11.
11.
8.
S.
2.

82
91
05

11
12
08
24
07

80
54
83
53
48
17

LTRN TIME DAZ
1 13/24/46.8 ~-15.
1 13/24/45.8 -14,
1 13/24/49.7 -13.
1 13/24/53.6 -13.
1 13/24/57.6 -11.
1 13/25/1.5 -11.
1 13/25/5.4 -10.

lost lock on ASR-4

28
33

28
28
28

13/25/33.0 -4.
13/25/37.0 -3.

13/25/40.9

1
w

13/25/44.8
13/25/48.8

11/18 RUN 3

99
41
98

10
95
16

48
78

.34

TOA

53.
49.
47.

44,

41,

39.

36.

16.
14.

12,

89

52

46

79

12

10

83
37

73

RANGE
6.85
6.20

5.17

1.81

SCAN #
17
18
19

20

21

22

23

30
31

32

RL
18
19
21

19
22
20

19

19
19

18

HITS
17
14
19

18

22

18

18

12
16

14

no target report for OWN this scan

no target report for OTHER this scan

COMPARATIVE DATA ASR-4 VS. BCAS '(CONTINUED)

TIME
13/24/41.1
13/24/45.0
13/24/49.0

13/24/56.8

13/24/56.8

13/25/0.8

13/25/4.7

13/25/32.6
13/25/36.3

13/25/40.2
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LZT

SCAN #
7
8
9

10
11
12
13
14
15
16
17
18

DAZ

-14.
-13.
-13.
-13.
-1z,
-12.
-11.
-11.
-11.

-9.

-8.

-8.

18
51
05
00
54
29
80
05
28
45
92
50

NRP
17
13
12
12
19
19
18
11
18
14
18
20

TABLE 5-17.

TOA
8.33
8.48
8.55
8.33
8.00
7.63
7.20
6.85
6.50
5.98
5.60
5.26

LTRN
98
98
98
98
98
98
98
98
98
98
98
98

TIME
13/13/42.5
13/13/46.4
13/13/50.4
13/13/54.3
13/13/58.2
13/14/92.1
13/14/06.1
13/14/10.
13/14/13.9

[=]

13/14/17.9
13/14/21.8
13/14/25.8

11/17

DAZ
-14,
-14.
-13.
-13.
-12,
-11.
-11.
-10.
-11.
-10.

-9,

-8.

RUN 3

24
06
80
01
39
69

72
16
20
316
26

TOA  RANGE
8.79  3.05
8.78  3.05
8.99  3.02
8.38  2.92
8.35  2.79
7.64  2.74
7.74  2.75
6.97  2.63
7.60  2.73
6.92 2.6
6.17  2.44
5.20 2.28

SCAN #
9
10
11
12
13
14
15
16
17
18
19
20

RL
22
21
17
16
22
25
22
16
23
27
21
21

HITS
15
15
16
15
20
23
22
16
23
20
18
19

COMPARATIVE DATA ASR-4 VS. BCAS (CONTINUED)

TIME
13/13/42.2
13/13/46.2
13/13/50.1
13/13/54.0
13/13/57.9
13/14/01.9
13/14/05.8
13/14/0.97
13/14/13.6
13/14/11.5
13/14/21.5
13/14/25.4
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SCAN #

~N o s

DAZ

[T R L T 7

.74
.14
.82
.17
.24

NRP

10
16
15
20

| TABLE 5-17.

TOA

20.24
21,32
22,49
23.58
24.71

LTRN
119

119
119
119

COMPARATIVE DATA ASR-4 VS. BCAS (CONTINUED)

TIME DAZ
13/49/21.9  3.52
13/49/25.9 4.31
13/49/29.8 4.13
13/49/33.8 3.96
13/49/37.7 3.34

11/17 RUN 7

TOA
20.81
24.07
23.86
24.31
24.87

RANGE
1,93
2.27
2.24
2.25
2.21

SCAN #
49
50
51
52
53

RL
19
14

15

13
18

HITS
13
1
14
13
17

TIME
13/49/21.4
13/49/25.5
13/49/29.4
13/49/33.4
13/49/37.3



no false alarms detected by BCAS other than the multiple false
targets of OTHER that have previously been discussed. Assessments
of the output listings did not detect any missed tracks. However,
there were many multiple global tracks of OTHER (see Figure 5-10)
that appeared throughout the test runs. These multiple global
tracks could have been generated for a variety of reasons. A faulty
or marginal transponder could be the cause of false targets/false
tracks. The aforementioned false targets of OTHER resulted in
multiple global tracks. Perhaps the algorithm used in the software
is heavily oriented to negating missed alarms/missed tracks and
thus may inadvertently be conducive to false targets/false tracks.
In any such event, additional testing is recommended in order to
investigate OTHER's false target anomaly and also to investigate
the predominance of false tracks.

5.15 SYNCHRONOUS GARBLE

Synchronous garble flight testing performed on the passive
BCAS consisted of measuring both synchronous and self garble inter-
ference with the system. The tests involved two aircraft and a
fixed target atop a fire tower. The observing aircraft, referred
to as OWN, maintained a constant radius in flying a circular pat-
tern about the fixed target. The second aircraft flew inbound and
outbound radials inside the orbit along the center line of the
antenna beam passing through the fixed ground target.

Self garble interference with both targets on the radial
regardless of their radial separation distance is observed by OWN
when the major axis of the ellipsoid coincides with the line of
position on the radial; all three targets are within the antenna's
main beam. Synchronous garble interference is observed when the
fixed transponder reply and the reply from the aircraft flying the
radial are within +20.3usec separation; the OWN is outside the
antenna main beam but within the widened azimuth window.

By definition, self garble interference is observed when the
BCAS itself, is replying to a ground interrogator, during the 20.3u
second interval and the intruder replies arrive in coincidence.
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Synchronous garble is generic to ATCRBS and is caused by inter-
ference of two aircraft replying in coincidence with their message
length occurring at the same time as the receiver and OWN aircraft
is taking a measurement. The difference in both signal arrivals is
within +20.3psec interval.

BCAS synchronous garble tests were conducted at NAFEC. Two
aircraft and the fire tower at MIZPAH were employed. One aircraft
was instructed to fly outbound and inbound radials to the ASR-5 on
a 293.6° azimuth heading. At a distance of 12.3 nautical miles from
the radar, the aircraft was positioned over the stable transponder
affixed to the fire tower at MIZPAH. See Figure 5-11. While this
aircraft flew a prescribed radial pattern, the other designated air
craft would fly the circular pattern about the fire tower with the
radius designated as five nautical miles.

Beacon codes were assigned to the three targets of interest.
For the radial aircraft code assignment was 0302. The orbiting
aircraft code assignment was 301, while the MIZPAH tower transponder
was designated 1270.

Subjective evaluation of the flight testing can be accomplished
with data reduction software at a later date.

Two examples of pictorial representation that can be employed
are a plot depicting the receipt of the targets at MIZPAH and radial
aircraft as missing, garbled, or present (received), Figure 5-13.

Another source is listings Figure 5-12,and Figure 5-13 that
delineate the targets of interest by scan, beacon code, TOA, DAZ,
and number of replies. The listings also indicate whether the "X
or "SPI" pulses in the reply train were set inadvertently, Figure
5-12,

5.16 EXPERIMENTAL BCAS THREAT LOGIC

§.16.1 Threat Logic Description

The threat logic of the experimental BCAS is more complex than
ANTC-117 logic specified for independent airborne collision avoidance
systems. The basic threat criterion in ANTC-117 is TAU, the ratio
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of range to range-rate. When the BCAS is operating in the active
mode (transmitting interrogations on 1030 MHz), it can obtain this
same TAU. However, when the experimental BCAS is operating in the
passive mode, it cannot obtain range or range-rate. Instead, it
computes a number of TAU values based on the ratio of TOA to TOA-
rate and differential azimuth to differential azimuth-rate for each
locked radar.

The BCAS equipment evaluates the measured TOA and TOA change
data for each radar and classifies that threat as shown in Figure
5-16. Similarly, the BCAS equipment evaluates the measured
azimuth and azimuth change data for each radar and classifies the
threat as shown in Figure 5-17. The values of the parameters
specifying the TAU threat zones are shown in Table 5.16.1.

TABLE 5-18. TAU THREAT ZONES

TAU ZONE Tm (SECONDS) To (SECONDS) SLéPE (SECONDS)
TAU-0 6.1

TAU-1 3.0 25 + T
TAU-2 22.0 40 + T
TAU-2P 22.0 40 + T

The TAU threat zones, in order of increasing severity of
threat, are no threat, TAU-2, TAU-1, TAU-0. The threat category
assigned to the target in the least severe of the categories
determined by the individual measurements (TOA/TOA rate, DAZ/DAZ
rate for each radar). The overall threat status of a given target
is a combination of the threat based on essentially horizontal
proximity and described by the TAU state and the altitude separa-
tion of OWN and the target. The BCAS generates an octal code for
each threat state and outputs the code onto magnetic tape. The
set of octal codes is defined in Table 5-19.
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FIGURE 5-16. TOA/TOA-RATE ZONES
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TAU ZONE
1

TAU ZONE
2

A AZIMUTH
TIME BETWEEN MEASUREMENTS

i
! AZIMUTH

TAU ZONE
2

FIGURE 5-17. AZIMUTH/AZIMUTH-RATE ZONES
NOTE: Do not use this figure if largest TOA 1is
less than 6.1 microseconds (0.5 nmi) AAo = .7°
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TABLE 5-19.

THREAT CLASSIFICATION CODE

Octal Code Meaning (Threat Status)
00 No Threat
02 TAU-1 or TAU-2; 1900' - 3300' below
03 TAU-1 or TAU-2, 1900' - 3300' above
04 TAU-1 or TAU-2, 1400' - 1800' below
05 TAU-1 or TAU-2, 1400' - 1800' above
06 TAU-1 or TAU-2, <1400' below; not co-altitude
07 TAU-1 or TAU-2, <1400' above; not co-altitude
12 TAU-1 or TAU-2, Pred. co-alt; 1900' - 1300' below
13 TAU-1 or TAU-2, Pred. co-alt; 1900' - 1300' above
14 TAU-1 or TAU-2, Pred. co-alt; 1400' - 1800' below
15 TAU-1 or TAU-2, Pred. co-alt; 1400' - 1800' above
16 TAU-1 or TAU-2, pred. co-alt; <1400' below
17 TAU-1 or TAU-2, pred. co-alt; <1400' above
20 TAU-2; Co-altitude below
21 TAU-2; Co-altitude above
22 TAU-2; Same Altitude
30 TAU-1; Co-altitude below
31 TAU-1; Co-altitude above
32 TAU-1; Same altitude
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The experimental BCAS system has provision for specifying
various combinations of active and passive operation and various
choices of antennas. These are determined by specifying what is
referred to as the I-code, consisting of 2 digits, of the form
IDR DA’ The digit Dp may be set to a value from 0 to 3. The BCAS
will always interrogate in the active mode unless it is locked to
more than Dy ground radars. The octal digit Dy determines antenna
selection and the decision whether to initiate active interroga-
tion if a threat is determined to exist. The significance of the
DA code bits is specified in Table 5-20.

TABLE 5-20. INTERROGATOR AND ANTENNA ASSIGNMENTS

Interrogate Antennas

DA on Threat Top Bottom

0 0 0 0 - do not interrogate

1 0 0 1 - bottom antenna

2 0 1 0 - top antenna

3 0 1 1 - both antenna

4 1 0 0 - interrogate on threat
(however, neither antenna
is selected, hence no
interrogation)

5 1 0 1 - bottom antenna
interrogate on threat

6 1 1 0 - top antenna
interrogate on threat

7 1 1 1 - both antennas; interrogate
on threat
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For the purpose of clarification, examples of possible
interrogation modes are given as follows:

100 - full passive; interrogator always OFF
I33 - full active; forced (both antennas)

123 - active unless locked on 3 radars; then interrogator
is always off

127 - active unless locked on 3 radars; then interrogator
is OFF, but will go active on threat (both antennas)

I17 - active unless locked on 2 or more radars; then inter-
rogator is OFF, but will go active on threat (both
antennas)

I13 - active unless locked on 2 or more radars; then inter-
regator is always OFF (both antennas).

NOTE: active interrogation consists of
12 bursts with 3 or 6 millisecond intervals on top
antenna
12 bursts with 3 or 6 millisecond intervals on bottom
antenna
separated by 18.2 milliseconds between antenna switch-over and
2.5 seconds between the bursts.

5.16.2 Flight Patterns Used for the Threat Logic Tests

The BCAS threat logic was tested in the level flight encounters
and in the climb-drive encounters. The latter patterns appeared
to be more demanding on the performance of the threat logic, and
therefore greater emphasis was given to this test.

Tests were conducted at NAFEC in the vicinity of Sea Isle
-Vortac by having radar coverage from the test van located at
Newport, N.J. and the ASR-4 radar at NAFEC. The layout of the
flight test patterns flown are shown in Figure 5-18.
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FIGURE 5-18. TEST LAYOUT
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Three flight patterns flown between altitudes of 9,000 and
11,000 feet were used in the BCAS test. These are:

Pattern A. In pattern A, the OWN aircraft was repeatedly
flying figure eights along 30°/210° and 50°/230° at 10,000 feet
altitude (Figure 5-19). Meanwhile, the OTHER performed parallel
climb-dive flights between 9,000 and 11,000 feet altitudes.

11,000 10,000°

9,000°"
LEVEL VS. CLIMB-DIVE PARALLEL

FIGURE 5-19. PATTERN A - BCAS EQUIPPED ATIRCRAFT (OWN)

FLYING LEVEL AND OTHER FLYING IN THE SAME DIRECTI
EITHER CLIMBING OR DIVING CTION

Table 5-21 gives a summary of Pattern A maneuvers and
interrogation modes used.

TABLE 5-21. PATTERN A INTERROGATION MODE SUMMARY

Test Interrogation
Number Maneuver Mode

1 D* 117

2 C I17

3 D 133

4 C 133

5 D 132

6 C I32

7 C 131

8

¥Indication maneuver of OTHER aircraft:
145
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Pattern B. Both the OWN and OTHER aircraft were in climb-dive

parallel patterns similar to Pattern A flying along the 30°/210°
and 50°/230° figure eights (Figure 5-20).

Table 5-22 gives a summary of the climb-dive maneuvers and

interrogation modes used.

Pattern C. In pattern C, OWN aircraft was flying a sequence
of figure eights along 300°/120° and 320°/140° at 10,000 feet
altitude (Figure 5-21): OTHER performed repeated encounters in
parallel climb-dive flights between 9,000 and 11,000 feet altitudes.
Table 5-23 gives a summary of Pattern C interrogation mode.

5.16.3

Threat Logic Climb-Dive Test Data Analysis

The twenty-four climb-dive tests were analyzed to assess

BCAS adequacy in determining altitude threat zones. Associated

BCAS and ARTS III field test tapes were processed to produce

(o]

o

o]

s}

BCAS Detailed Listings

Threat Information Listings

TOA Cal Comp Plots - OWN Interrogator

TOA and DAZ Comparison Cal Comp Plots (BCAS versus ARTS IIT).

The BCAS Detailed Processing Program output is described in

Section 6. Of particular importance for this analysis is the

threat information listing containing Type 7-1 message data

(Appendix E). A representative sample of these data is contained

in Figures 5-22 - 5-26.

Plots of OWN interrogator TOA were generated for all tests
and are shown in Figures 5.16-12 through 5.16-33. During testing,

when a threat occurred, OWN's interrogator was activated every
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11,000"'

10,000

9,000"

CLIMB & DIVE PARALLEL

FIGURE 5-20. PATTERN B - BOTH AIRCRAFT OWN AND OTHER, CLIMBING
AND DIVING IN THE SAME DIRECTION

TABLE 5-22. PATTERN B INTERROGATION MODE SUMMARY

Test Interrogation
Number Maneuver Mode

9 D-C* I17

10 C-D 117

11 D-C 133

12 C-D 133

13 D-C 132

14 C-D 132

15 D-C I31

16 C-D 131

*Tndication of OWN-OTHER aircrafts; e.g. D-C; OWN-drive OTHER-climb
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11,000"

9,000

LEVEL VS. CLIMB-DIVE HEAD-ON

FIGURE 5-21. PATTERN C - OWN AIRCRAFT FLIES LEVEL AND OTHER
FLIES OPPOSITE DIRECTION EITHER CLIMBING OR DIVING

TABLE 5-23. PATTERN C INTERROGATION MODE SUMMARY

Test Interrogation
Number Maneuver Mode

17 D# 117

18 C 117

19 D 133

20 C 133

21 D 132

22 o 132

23 D 131

24 C I31

*Maneuver of OTHER: D-dive, C-climb.
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cLeck D3aXCsoXA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT
GTRN BcD (SEC) BTHER ALT BWN ALT OTHER BWN Tau0 TAUl TAUZ  TAyzp BITS STATUS
2 4277 3524712 7500 11300 000 000 1304729 1300729 115762 1150762 0001 [+]+]
3 4233 352.7%2 11500 11300 000 (00 118,252 118252 64¢067 644067 0010 (o]s}

TVAN  HIT 16 BCT353522723¢5YS CAACAACA SCP 3+958S SCN 227 PRP39ISUS
SLS 722/ 159« 599 NIN 95 @AL 11300FT AWN133+09 ACH 55¢37 RID D

TARGETS FBR SCAN 227 RID O TID 8cD NRP T6A DAZ TAL LTRN GTRN TIME
LA 4 J eeoa wa® avw Spw oe® ®cscw =999 LA A )

1 4277 8 9:860US 1145 7400 97 1 11138314645

2 2024 9 14.790US 4000 wewuwe 103 11:38146.5

3 4277 9 164+810U8 11498 7400 107 1113814646

4 4233 6 22.690US *18e11 11500 104 3 11:38:46.2

ASR& HIT 18 BCT354306275:5US ACAACAAC SCP 3+926S SCN 123 pPRP2625US
SLS1091/ 261« 599 NIN 116 BAL 11300FT AWN197¢11 ACKH348¢05 RID B8

1 4277 355,201 7500 11300 000 010 130,738 1300738 1150771 115774 0011 00
N8 TURN MAXIMUM RATE 2000 FT/MIN UP
2 6277  355.20% 7500 11300 000 010 1304729 $30729 1350762 1155762 0001 00
N8 TURN MAXIMUM RATE 2000 FT/MIN UP
3 4233 355.241 11500 11300 000 010 1304719 130+71F 334573 »33.573 0010 24
N8 TURN MAXIMUM RATE 2000 FYALLIN i
TARGETS FBR SCAN 123 RID 8 TID BCD NRP Y0A DAz TAL LTRN GTRN TIME
oo oee Qow oew ogw . pPee SWEOD agew eves
$ 0200 14 2.430US 31007 111111 111383473

2 4277 16 46.640US 10Q0.76 7400 91 1 11138:47.3
3 4277 9 51+620US 9473 7400 100 2 111381473
4 3030 13 97,200US 13¢65 cevess 1113834744

HIT 37 BCT356111863¢6US AACAACAA BCP120039S SCN 0 PRP2739US

WIT 16 BCT3I56935229+4US AAAAAAAA SCP15+713S SCN 0 PRP3342US

HIT §9 BCT357612860+8US ACACACAC SCP16+6716 SCN -0 PRP2505US
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{1 4277 3574948 7400 311300 000 010 1304738 1304738 $15+778 115.771 0014 00
N8 TYURN MAXIMUM RATE 2000 FT/MIN UP

FIGURE 5-22. BCAS QUICK LOOK RADAR/TARGET LISTING
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FAXTHOM RATE 2000 FY/MIN DGWN
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MAXIMUH RATE 2000 FT/MIN DBWN
5 4216 177.225 8800 10000 000 000 1164075 1164075 45¢660 410460 1000 00

FIGURE 5-23.

MAXTMUM RATE 2000 FT/7MIN DOWKN

BCAS DETAILED PROCESSING LISTING - JUNE 1977
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LCAS DETAILED PROCESSING PRAGRA A
RADAR/TARGET Loy e GRAM OFN RADAR DATE 6 APR 1977 PAGE 0007

TARGETS FBR SCAN 41 RID k“ TIp BCD NRP 104 DAZ TAL LTRN GTRN 1
1 4216 22 37.760us 00 10600 92 5 13:I3'a1.;
2 2400 .8 ?79.290US 00 unuans 13;13:41,4
3 3065 18 96.450US 00 27800 131131414

BwWN HIT 24 BCT 3538707.3us 866686800 S 42 PRP
N h CP 244995 SCN 42 PRP U
SL 0/ 10. 593 NIN 24 BAL 9700FT AWN ¢00 ACH218+67 RID zoggﬂg 1 fII 6080653.6US

FIGURE 5-24. BCAS DETAILED PROCESSING LISTING - APRIL 1977
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FIGURE 5-25. BCAS DETAILED PROCESSING PROGRAM OF TOA AND DAZ.
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LCAS DETAILED PRBCESSING PRBGRAM
TOA/DAZ REPLY LISTING FBR RADAR K SCAN &1

INTERRBGATION TIME: 3470089+395 MBDE: A
37.700 004216 79.315-_(02 97.005 007421
INTERROGATION TIME  ~ 3473089.445 MBDE: C
«22.91C 000000 37.8 TE0 96,425 001740
INTERRBGATION TIME: 3476089+495 MBDE: A
37.700 004216 79+315 022400

INTERROGATIBN TIME: 34820894595 MBDE: C

=23.055 000000 96+425 001740

INTERRBGATION TIME: 34850894645 MBDE: A
37.700 004216 79+315 022400

INTERROGATIBN TIME: 3488089+695 MBDE: €
37.845 006160 964425 001740

INTERROGATION TIMES 34940894795 MBDE: A
37.700 Q04216 79315 022400

INTERROGATION TIME: 3457083845 MBDE: C

=22.910 000000 37.845 006160 96.425 001740
INTERRBGATION TIME: 35000894895 MADE: A
37.700 004216 46+835 012000 58+435 004000
INTERRBGATION TIME: 3506089,995 MBDE: C
=23+055 000000 374845 006160 96.425 001740
INTERRABGATION TIME: 3509090045 MBDE: A
=224910 000000 374700 004216 734315 022400
INTERRBGATION TIME: 3§1809%-;25 MaDE: C
224910 000000 37+8 006160 96.425 001740
INTERROGATION TIME: 35467314215 MBDE: A

58,145 002754 37,700 0O 8:740 000200
INTERRBGATION TIME: 3549231265 MBDE$ C
374845 006160 9644285 001740

INTERROGATIBN TIME: 3552231315 MBDE: A

33,350 023025 360250 011412 37.700 004216
964715 003065

INTERRBGATIBN TIME: 35582314415 MeDE; €
37.845 006160 964425 001740

INTERRBGATION TIME: 35612314465 MBDE; A
37700 004216 464980 000000 79+315 020400
INTERREGATION TIME: 35642314515 MBDE; C

474125 006160 964425 001740
INTERRBGATION TIME: 35702314615 MBDE: A
484720 001200 37700 004216 46+980 000000
INTERRBGATIBN TIME: 3573231665 MBDE: C
23,055 000000 =2.465 020400 7.685 030245
26.390 Q06516 37845 006160 67.860 000000
INTERROGATIBON TIME: 3576231715 MEDE: A
37.700 004216 794170 002400 B88.740 001000
INTERROGATIAON TIMES 35822314815 MBDE: C
37.845 006160 67860 000000 8B.015 006112
INTERROGATION TIME: 35852314865 MBDE: A
=30.160 ©DOCO0 26+100 ONO101 37.700 004216

FIGURE 5-26.
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2.5 seconds in a burst mode of 24 omnidirectional interrogations:
12 interrogations from the top antenna spaced 3 or 6 milliseconds
apart, followed by a delay of approximately 18.2 milliseconds, and
then 12 interrogations from the bottom antenna, again with the

same repeating spacing sequence of 3 or 6 milliseconds. Meanwhile,
the target aircraft (OTHER) utilized only the aircraft trans-
ponder's antenna physically located on the underside of the
fuselage.

TOA and DAZ comparison plots of BCAS versus ARTS III were
generated for selected test runs and are shown in Figures 5.16-34
through 5.16-51.

Threat information of each run of the climb-dive tests is
summarized in Table 5-24. The following conclusions can be
made on the basis of the reported data:

1. The threat code sequences are consistent with the flight
patterns with only few exceptions.

2. The advisories generated in flight by the Tie-Breaker
logic in the form of X, D1 pulses (Table 5-25) and
the BCAS display algorithm (Appendix C) are consistent.

3. Multiple global tracks were initiated for the target
in most of the test runs. No explanation is available
on the cause of these multiple tracks.

Altitude profiles of the flight trajectories derived from
the BCAS and ARTS III data have been plotted for the runs numbered
1, 11, and 17, with the threat codes generated by BCAS superimposed,
(Figures 5.16-52 to 5.16-54).

5.16.4 Level Flight Test Data Analysis

These tests entailed two aircraft flying daisy patterns (15°
and 30° petals), one aircraft flying left turns, the other aircraft
flying right turns, separated by 400' in altitude. The level flight
tests were analyzed to assess the ability of BCAS to determine co-
altitude threat zones. The level flight test data were processed
by the same reduction programs as the data for the climb-dive tests.
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SST

Test No.

10
11
12

13
14

15

16
17
18
19
20
21
22

Run Description

Pattern
Pattern
Pattern

Pattern

Pattern

Pattern

Pattern

Pattern

Pattern

Pattern
Pattern

Pattern

Pattern

Pattern

Pattern

Pattern
Pattern
Pattern
Pattern
Pattern
Pattern

Pattern

A
A
A

A

in dive, I17
in elimb, 11

in dive, 133

in climb, I3

in dive, 132
in ¢limb, I3
in dive, 131

in ¢limb, I3

dive-climb,

climb-dive,
dive-climb,

climb-dive,

dive-climb,
climb-dive,

climb-dive,

climb-dive,

level-dive,

level-climb, I17

level-dive,

level—-climb, I33

level-dive,

level-climb, 132

7

3

2

1
117

117
133
133

132
132

131

131
133

133

132

TABLE ‘5-24. SYNOPSES OF CLIMB-DIVE TESTS

Threat Code Sequence

07-21-31-32-20-0
06-16-20-21-07-20-30-07-32-31-21~00
00-17-21-31-32-30-20-00

06-30-20-00
07-17-31-32-30-20-00

06-00-20 - 00-30-31-21

07-17-07-21-31~32-30-20-00

32-30-31-22-00
02-04-06-16-30-20-32-31-32-21-07

00-21-31-22-32-20-30-06

00-05-07-17-21~32-30-06-04

31-02-30-04-20-06-32-31
03-05-07-17-21-31-32-30-06-04

16-20-30-22-32-31-21

07-17-21-31-32-30-00-06-04
21-31-32-30

21-31-32-30
06-30-20-30
21-31-32-30-05-03
20-30-32-30

TB: Tie Breaker

DI: Display Indicator

TAU-2, 2P - always negative
Remarks TAU-0 - always positive, except in threat 30, 31, 32)
3 global tracks of OTHER
6 global tracks of OTHER

ASR-4 lock was lost; regaining lock the same 2 global
tracks of OTHER appeared again.

2 global tracks of OTHER

2 global tracks of OWN; TB: Threat-fly straight and level;
DI: 1level off no.turm

One global track of OTHER; TB: threat-fly straight; dive
DI: level off-no turn; dive

One global track of OTHER

2 global tracks of OTHER; TB: threat-fly straight and level;
climb; DI: 1level off no turn; climb no turn

3 global tracks of OTHER
No data reported.

No false tracks; TB: threat-fly straight and level; climb
DI: level off no turn; climb no furn

Erroneous altitude codes

TB: threat-fly straight and level; dive; climb
DI: no turn level off; dive; climb

2 global tracks: GTRN1l 16-20-30-32-31-21
GTRN2 20-30-22-31

2 global tracks of OTHER

3 global tracks of OTHER; TB: threat-dive
No data reported.

5 global tracks of OTHER

4 global tracks of OTHER

2 global tracks of OTHER



TABLE 5-25. TIE-BREAKER CODE

Bit Assignment Advisory

XAXCDl
no threat

threat-fly straight and level
dive

climb

turn left

turn right

T-L and change altitude

= == O O O O
- = O O = = O O
= O H O = O© = O

T-R and change altitude

XA bit related to the Mode-A message reply
XC bit related to the Mode-C message reply

Hand computations were also performed to verify TAU values using
BCAS measurements and threat equations in Appendix C and it was
determined that the BCAS was computing the TAU values correctly -
i.e., consistent with the measurements.

5.16.5 Results of BCAS TAU Analysis

Threat Logic Performance Assessment. Analysis of the data

reduction output indicates that BCAS can determine the threat zones
defined in Appendix C.

For both the climb-dive tests and the level flight tests, the
threat status code sequences were found to be predominantly cor-
rect - i.e., consistent with the sequence of OTHER's penetration
through various altitude and range boundries during the test pat-
terns.

The BCAS computed and recorded on the detail tape a set of
quantities designated as TAU-0, TAU-1, TAU-2, and TAU-2P times,
which are predictions of the time until the target will enter into
the corresponding threat status. These numbers were not analyzed
for correctness or consistency. It was noted, however, that when
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multiple global tracks were generated for a target, these quantities
were different for each global track (cf. Figure 5-22). The

sign of the reported values follows the following rule: when the
values of TAU words are positive the aircraft is outside the cor-
responding regions and the specific values denote the expected time
when these regions will be crossed. When the values are negative
and no more negative than minus seventy-five seconds, it means the
aircraft is inside that boundary.

Tie-Breaker Performance Assessment. The tie-breaker data and
the dive indicator information were also analyzed. The software

consistently output tie-breaker data when the system predicted a
co-altitude threat (i.e., threat status codes 12, 13, 14, 15, 16
17, 20, 21, and 22} for purposes of indicating to the ground and

other BCAS equipped aircraft the anticipated evasive meaneuvers.
Throughout this time period, the dive indicator would instruct
the pilot to maintain level flight. When the TAU-1 boundary was
penetrated, the dive indicator would immediately display the pre-
viously forecast evasive maneuver.

The tie-breaker bits should be distinguishable by other
aircraft in the vicinity. However, this information was
occasionally received incorrectly by the ARTS III site, in the
sense that the ARTS III logic associated the tie-breaker bits
with a wrong target. Thus, if this technique were being used
operationally, there would be occasions when the ground control-

ler's display would attribute planned evasive action to the wrong
aircraft.
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6. DATA REDUCTION PROGRAMS

6.1 BCAS DATA TAPE PROCESSING

The BCAS data reduction programs developed at TSC were de-
signed to extract the information contained on the BCAS data col-
lection tape. Together with data from other NAFEC measurement
systems, these data were used to determine BCAS system accuracies.
The information on the BCAS data collection tape is grouped into
the following record types:

Type 0-1 Header

Type 0-2 Header (alphabetic info)

Type 1-1 Main Beam Interrupts (unrecognized)

Type 2-1 Recognized and locked radars

Type 2-2 Recognized and locked radars
(alphabetic info)

Type 2-3 Recognized and locked radars

Type 3-1 Raw replies

Type 3-2 Raw replies (interrogation table)

Type 3-3 Raw replies (reply data)

Type 4-1 First correlated replies

Type 5-1 Second correlation

Type 6-1 Third correlation

Type 7-1 Threat Info.

A detailed description of each record type, enumerating every
data element within each record, is contained in Appendix E. The
processing programs that process the BCAS data collection tapes
and present the information in a form suitable for reading by
an analyst are discussed in the following sections.

BCAS Detailed Processing Program

This program generates a detailed listing in readable format
for record times 0-1, 0-2, 2-1, 2-2, 2-3, 4-1, 5-1, 6-1, and 7-1.
By setting program switches at the time a BCAS tape is processed,
it is possible to selectively print various subsets of the
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information on the tape. In addition a version of the program was
developed to write an image of the paper report on magnetic tape.
Such tapes serve as convenient input for programs to perform
further processing of the BCAS data.

A sample output listing is shown in Figure 6-1 with details
provided in Table 6-1. The data elements in each group of
output lines.

6.2 RANGE-BEARING CALCULATIONS

A sequence of programs have been developed that permit BCAS
tapes and ARTS tapes to be used to generate plots of slant range
and bearing between the BCAS aircraft and selected targets as
functions of time. The calculations are performed on the PDP-10
computer at TSC and the results are plotted on the associated
Calcomp plotter. Sample plots are included in this report as
Figures 5.2-10 - 5.2-19 (Appendix F).

The resulting plots show BCAS-derived and ARTS-derived range
and bearing values superimposed on the same plots for comparison.
If the BCAS on-board interrogator has been used, the range based
on active interrogations is also plotted. The ARTS-derived values
are plotted with error bars corresponding approximately to their
90% confidence intervals.

Plots can be generated for range and bearings between the
BCAS aircraft and any other transponder-equipped aircraft (in-
cluding targets of opportunity) or between the BCAS aircraft and
the fixed transponder.

6.3 ERROR ANALYSIS PROGRAM

A typical printout generated by the Error Analysis Program is
shown in Figure 6-2. The listing includes TOA and DAZ measure-
ments made by BCAS; values for TOA and DAZ computed from EAIR
measurements; and the differences in these TOA and DAZ values.
Associated means, standard deviations, number of samples, sums,
and sums of squares are also listed for TOA and DAZ.
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DATE {& CEC 1978 PAGE 0373

RADAR/TARGET LISTING
A |INT259538288.6US DATE12/99/76 ExT1ei 4342405 VER1015 MBDE3 AXTOAL00+050LS WAw 35D uAL 10200FT LA 7000F 1

B ‘pun 7 131

TARGETS FBR SCAN 189 RIp K TID BCD NRP TBA Daz TAL LTRN GTRN TIME
1 120C 12 58.870US *«CO 6900 143 433348
HIT #2 BCT260714889+5US ACAACAAA SCP14.958S SCN 0 PRP2820US

w18 Dl.'cbucuv:u:'zu: LARLRALR a\.r’ IEIVS SLIW O2TPRPIITIVD

¢
“ﬁ“;sstes/ 322- 599 NIN 128 9AL B6COFT AwN225:40 ACH298+83 RID 4

INTERNAL T1E+BREAKER
cLecx D1sXCsXA PREDICTED TIME UNTIL ALARM (SEC) RACAR THREAT
G oTRN BCD (SEE) BTHER ALY Bur ALY BTHER OWN TAUO TAUL TayU2 TAy2P BITS STATUS
+-2753 PEIEWS 10200 8500 V00— 000 to8 ot RRveyR 1TISvESR 1T3vese 1ot "2
E TARGE?S ren SCAN 92 nm A no aco NRP T6A DAz TAL LTRN GTRN TIME
e e e a T wed Baw T R Wew. eew Sese sews ewedaT T - -
1 1200 13 zs.sxous -12¢66 6300 143 414249
GWN HIT 12 BC'?SBSOMe?&-»uS 0B8RABBE SCP 24995 SCN 190 PRPIOOOUS
SLS 0 1= 598 WIN 12 BAL_ BS0OFT AWN 00 ACHZ98+83 RID K cee—s T o S e T T
TARGETS FOR SCAN 190 RID K  TID BCD NRP TBA DAZ  TAL LTRN GTRN TIME
1 1200 10 60.050US +00 6900 125 163 434143
HTT 13 BCTZEIS5T259+1US AACAACAR SCP 4+7065 SCN U PRP3CCEUS
F MIT 26 BCT261807611+1US CACACACA SCP10+110S SCN O PRP2860US

_ - —HTTI% BCT261973021«2US ACACACAC SCFI4.0585 SCN 0 PRPSEIIUS T
HIT 18 BCT262298300-9u5 AACAACAA SCP 3.9325 SCN_ 0 PRPEéZSUS

TVAN HIT O BC726231115505U$ ACAACAAC SCP 4.008S SCN 189 PRP399BUS

] 371 NIN"IQU OALC 8S0UF I AWN1IJI3e/J ACHZF8+03 RTD

1 2753 263747 10200 8500 000 0CO 1250759 1250759 1100782 110!782 101! [¢]0}
~——TXRGETS FOR-SCAN 189 RID G ~TID "BLD NRP- -~ TBA " """ DAZ ~ TAL LTRN GTRN ° COTIMES -
eme mms se= eme -as aem wwew =eoe evenm
T 1200 T2 59777005 "R 5900 126 LR PR LS

—— guN- ——HIT12 BCT261298192+%US BI66GH00 STP 2+45995 SCN 19T PRPI0OOUS ~ ° S T
SLS 0/ 0~ 599 NIN 312 BAL 85CCFT AWN 00 ACH299v44 RID X
—TARGETS FOR SCAN 191 RIg X TI1p “BCO NRP —— TO6& '~ DAT YACCTRN GTRN ™"~ TIME — 7 e

ame owve o= ae= ,ue eme moee weww aven

T 1200 I¢ 61+160US 00 3900 129 19T 47438

RS HIT IB‘BET?353UZZT57IUS'CKICIICI‘SCP‘?TSBZS_SCN_—93_FRP
SL.51236/ 316+ 59Y NIN 128 SAL 8500FY AWNZ225+60 ACH299¢53 RID A

FIGURE 6-1. BCAS DETAILED PROCESSING LISTING



TABLE 6-1. TSC-BCAS DETAILED PROCESSING PROGRAM

This program generates a detailed listing in a readable for-
mat for record types 0-1, 0-2, 2-1, 2-2, 2-3, 4-1, 5-1, 6-1, and
7-1.

Figure 6-1 is a sample annotated listing containing the
following abbreviations:

A. Type 0-1 message

INT: internal clock time in u seconds

EXT: external clock time; hours, minutes and seconds to the
nearest tenth of a second.

VER: the BCAS version number

MAXTOA: maximum TOA in u seconds

WAW: widened azimuth window in degrees

UAL: upper altitude envelope for OWN

LAL: Lower altitude envelope for OWN.

B. Type 0-2 message

Contains up to 78 alphanumeric characters entered as a title
or run description.

C. Contains Type 2-1 and Type 2-2 information
ASR-5: denotes external radar identification of locked radar

HIT: number of interrogations of OWN in the main beam

BCT: internal clock time of OWN's beam center

CAACAACA: interrogation mode interlace for the last 8 inter-
rogations

SCP: scan period of the radar in seconds

SCN: denotes the scan number of the radar from radar lock

PRP: pulse repetition periods; for an ASR-7 radar, 8 such
periods are denoted.

D. Contains Type 2-2 and Type 2-3 information

SLS: # of sidelobe suppressions

322: # of missed interrogations

599: radar quality number

NIN: # of interrogations in the widened azimuth window

OAL: OWN's altitude in feet

AWN: OWN'S azimuth

ACH: aircraft heading

RIDA: internal radar identification. This is used to equate
target reports to the appropriate external radar (e.g.,
ASR-4) .
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TABLE 6-1. TSC-BCAS DETAILED PROCESSING PROGRAM (Cont.)

E. Contains Types 4-1, 5-1, and 6-1 record types

SCAN: scan number
RIDA: internal radar identification
TID: target identification

BCD: beacon code

NRP: # of replies

TOA: time of arrival in u seconds
DAZ: differential azimuth

TAL: target's altitude.

Type 5-1

LTRN: 1local track number.

Type 6-1

GTRN: global track number.

F. Contains Type 2 information for an unlocked radar; similar
to C above.

G. Type 7-1 message.

GTRN: global track number
BCD: beacon code
INT: internal clock time in seconds

OTHER'S altitude in feet
OWN'S altitude in feet
OTHER'S tie-breaker bits (Dy, Xc, Xj)
OWN'S tie-breaker bits (D3, Xc, Xj)

TAUO range/range rate from active
TAU1 time to penetrate 25 sec. line
TAU2 time to penetrate 40 sec. line

TAU2P passive data - 40 sec. line.
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TOA/DAZ ERROR ANALYSIS PRAGRAM DATE 24 JAN 1977 PAGE 0002
TARGEY C8DE! 0777 RUN 2 1 CAS 045 11/9/76  _ASRes I O _
SCAN BCAS EAIR TOA ECAS EAIR DAZ
_ TIME  NB. . T8A  Tea DIFF . LY DAZ ____ DIFF —
11312 48 E) 18.510 184146 364 w1791 *y+545 -e246
111121177 7 234760 23,454 2286 2241 <1:689 552
1181231646 8 264830 _ 264253 277 e2:4580 sje722 ve728
111127245 10 32,260 T31.910 LABO T T T 14881 T T 14730 =121
1181252804 11 3%.110 344837 213 2076 v1.688 -+¢388
T1712:32¢3 12 IBLI70  37.Ee3  »327 o <Te741 +1.7C3 <+ 03R -
111121362 13 414130 404712 418 20247 »1e72C .e527
11°12:%Ce2 T% 5. {2C %3.776 L] =Z2+098 1766 =v33¢
1184284840 16 504250 49.894 +356 20263 16947 9316
11:12:51+9 17 53,220 7 52850 4300 T T eRelFT T T e24T7H <+ 118
. 11!1_2}5508 18 S6e429 56.007 Wul3 «2+390 2,195 ~2195
11412359, 59,520 - . - «310 - ={+588 “2+298 710
118135 37 20 624660 624305 .355 =24653 »2¢382 =271
117130 /0 al €5«760 894328 H3C =2e13] o2y B 3% + 303
111132115 22 68+920 684515 405 30071 *2e463 -e608
11:13:15+4 23 T 72.010 71e5%6 354 27889 =2.51% =375
11513:19¢4 24 75+180 744702 478 «2e434 *2+63C 136
11713:23,3 25 78.1%0 77710 <480 =3+00% *2+B39 «+166
1111312702 26 814340 804868 472 2653 «3.095 442
117131372 27 BEe&10 BU,CTE +332 =3+505 3+ 353 v 162
11:13:39+0 29 93+620 90,073 547 -34895 *3e715 0180
RS LT 30 93.7%0 ~  93.202 By B =39933 3.885 <0438
11313:46-9 31 960740 96.376 «364 34867 44108 o241
DAZ MEAN: -e154 ___ _DAZ S5+Dei o344 Ns 23 SuMs ~3+539 SUM BF SQUARES® 3142
T9A MEAN: «385 TBA SeDs! <083 Na 23 SyMe 8.855 SUM BF SQUARESs  3+559
FIGURE 6-2. ERROR ANALYSIS



In addition the Error Analysis Program processes BCAS versus
ARTS TIII data.

6.4 PLOTTING PROGRAM

Computer generated plots of TOA, DAZ and OWN AZ depicting BCAS
measurements and either EAIR measurement or ARTS III measurements
are generated by this plot program. Examples of these plots are
shown in Figures 5.2-1 - 5.2-9 (Appendix F).

6.5 TOA/DAZ REPLY LISTINGS

Figure 6-3 shows a typical printout of the TOA/DAZ Reply
listing. The listing indicates the interrogation time, the inter-
rogation mode, the DAZ and, for the reply(s) received, the TOA and
the reply in octal format.

6.6 TOA/DAZ HISTOGRAM TABLE

The Histogram Table Program duplicates the manner in which
reply data are processed by the software on board the BCAS system
for purposes of target report declaration.

The Histogram Table (see Figure 6-4) lists TOA bins from
0.000 p seconds to 150 u seconds with the reply entries depicted
in histogram format within the appropriate TOA bin by their
associated DAZ value.

6.7 FRUIT SUSCEPTIBILITY PROGRAM

This program processes reply data received by BCAS and calcu-
lates over a prescribed time interval, on a per scan basis, the
number of transponder replies, the number of fruit replies,
percentage of fruit, means, and standard deviations (see Table
5-9).

6.8 ARTS III PROCESSING

The data reduction programs developed at TSC were designed
to utilize the information contained on the ARTS III data extraction
tapes as a means of monitoring BCAS system testing and to generate
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cYtesynTev 1 ASKIZ (D BEATAN CUTE «%72 TAPE IC: 9c48 FILE 1 SEGMENT PAGE 29

SCAN Tk AL RC [ YR ANGE A2IPLTH  VELBCITY UIRECTION FIRM  w/S VA veC RUN H[T
1 811734 N4 4572 1 15C 11.8C 2le. e 19C.27 332.49 37
1 4i1nive 1¢C 11450 215,33 [+ 3 2 12 1
@ WilDiuR n49 wH7P 1 1c0 11.37 21S.56 195.01 332,05 37
2 ei1zieb c 11.40 216.56 [+} 3 0 8 ?
3 10852 ru9 uE7? 1 11.31 217.C0 2C1e47 33075 37
3 «:10:% 100 11.31 21647 ¢ 3 2 13 1¢c
4 4110258 kY =72 1 1¢C 11.13 217.79 19%.901 332+058 a7
“  W31103S jcC 11.2% 217.79 1 3 3 19 16
4 #315855 1cC 11.25% 211.99 o] 3 2 17 9
5 41t o Nu9 4877 1 1060 11.12 218.76 1954061 332,08 37
5 43180389 168 11.19 219,22 1 3 2 19 15
6 4l e 49 4872 1 100 11,06 219,81 196463 338,16 37
& 43113 3 160 t11.4c 22C. 2R 1 3 3 17 15
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11 6311123 NG9 572 1 150 1Ce69 225.09 191.92 331456 37
11 4311:23 co 10.7% 22%.3% 1 3 2 19 15
12 «211:27 N49 457¢ 1 we 1C+69 226.23 19192 331.56 37
12 w1327 1:¢ 10,69 2264C5 [+] 3 3 18 1C
13 w311t 49 572 1 1cC 1062 227.29 19192 331,56 37
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14 4211335 121 1667 228443 1 3 2 22 19
15 4311339 a9 72 1 et 1Ce5C 229.57 121492 331.56 37
15 #:11:39 100 1C.56 229.92 1 3 3 18 &

FIGURE 6-3. FLIGHT HISTORY
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measures of BCAS interference (North/South Pulse Kit and Active
Modes) on the ATCRBS beacon environment. Information contained
on the data extraction tapes includes:

DAS Replies - contain the beacon code or altitude,
range, emergency and radio failure indicators, and a
garble indicator.

Target Reports - contain range, altitude, beacon code,
azimuth and VA and VC validity indicators.

Track Messages - contain the highest order of data output
and provide an indication of what the controller sees on
his DEDS comsole.

Sector Times - contain the time a sector boundary is
crossed (every 11.5°; i.e., 32 times per scan). The
time recorded is the ARTS III System Time which is
generally the current Greenwich Mean Time.

For the NAFEC ARTS III system, a modification was made to the
software to extract additional ARTS III data base information.
This data included ARTS III generated target run length and number
of hits on a per target basis. This is important information,
since it provides the analyst with the actual number of replies
correlated each scan for each target and the total number of
interrogations between the first and last reply correlated for
each target on each scan (run length).

A brief description of the major data reduction programs
follows.

6.9 FLIGHT HISTORY PROGRAM

As the name of the program indicates, a flight history list-
ing outputs pertinent information for the particular segment of
interest (i.e., from t; - tf), with the entries in numerical
ascending sequence of scan numbers for the specific aircraft,
and the aircraft ordered by beacon code.
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Figure 6-3 shows a segment of a typical flight history for
aircraft N49 reporting on beacon code 4572. The first data time
is the ARTS III track report for the specified scan; it is followed
by the corresponding target report generated for the same scan.
Note that in scan 4, an additional target report was generated due
to target splitting. It is evident from examination of range and
azimuth data which of the target reports is true and which is
false.

Figure 6-4 shows a continuation of the same flight segment
for aircraft N49 and contains performance measurements statistics
for the flight segments as follows:

NT number of target reports

NF number of false targets

PF probability of false target per scan
RL run length

NH number of hits

RR round reliability

PD probability of detection

PS probability of strong target.

Of the eight performance measurements, the most important ones are
run length, number of hits, and round reliability. Round
reliability is defined as the probability that the transponder
will reply to a detected interrogation and that the resulting
reply will be detected by ATCRBS. Lowered round reliability
affects the ATCRBS system in three ways: First, it reduces the
number of hits in the reply sequence, thereby creating holes in the
sequence and hindering target detection and code validation.
Second, it can produce a random distribution of misses which may
alter the apparent target centroid, thereby limiting azimuth
accuracy. Third, it can cause azimuth splitting (i.e., multiple
declarations of the same target).

6.10 CHRONOLOGICAL SCAN PROGRAM

The chronological scan listing (see Figure 6-5) contains
the same pertinent information as the flight history listing;
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however the data is output by scan number, with the aircraft
entries ordered by beacon code. Again, the same eight performance
measurements are indicated and the associated statistics relate to
the specified scan.

6.11 REPLY/TARGET REPORT

A typical printout for the reply/target report listing is
shown in Figure 6-6. This listing indicates the mode and azimuth
of each interrogation and the altitude, transponder code, and range
of all replies received from that interrogation. Since it is not
necessary to print out interrogations that do not result in recep-
tion of replies, a column has been added on the far right indicat-
ing the number of sequential interrogations with no replies. This
information tells the analyst the number of interrogations that
have elapsed since the last received reply without actually
printing out these interrogations. Target report messages are
interspersed in the listing and contain run length, number of
hits, and the sequential interrogation pattern of replies cor-
related to the target report. The target report messages are
identified numerically and their correlated replies have the
same numerical identification; where appropriate, reply data is
indicated fruit (F) and garble (G).

6.12 FLIGHT STATISTICS

The Flight Statistics Program calculates quantitative measures
of BCAS interference on the ATCRBS beacon environment. During
interference testing of the North/South Pulse Kit, of High Rate
of Active Interrogation and of Manual Mode of Active Interrogation,
the system under test undergoes short periods of time (30 seconds
to a minute) of alternate '"ON" and "OFF" cycles. Information is
collected on the ARTS III data extraction tapes and is sub-
sequently processed by this program for consecutive ON/OFF cycles.
Figures 6-7 through 6-9 show typical output listings. Figures
6-7 and 6-8 contain the eight performance measures of the
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indicated aircraft for the ON and OFF cycle respectively. Figure
6-9 denotes the mean and standard deviation of the eight
performance measurements for the contiguous ON and OFF cycles,

6.13 WIDENED AZIMUTH WINDOW

The Widened Azimuth Window Program processes target report
messages of aircraft that are present in the widened azimuth window
of BCAS. 1In processing these aircraft (beacon codes), range,
azimuth and altitude data are listed (see Figure 6-10) with re-
spect to OWN and generates corresponding TOA's, DAZ's, Ranges
and Bearings.

6.14 X&D1 PULSE ANALYSIS_PROGRAM

This program analyzes the current erroneous use of the X and
D1 Pulses in the transponder reply train as a means of assisting
the analyst in determining the viability of the use of these pulses
to indicate the direction of potential maneuvers of BCAS equipped
aircraft.
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7.1

used

7, NAFEC PROGRAMS

NAFEC-BCAS PROGRAM

The following data reduction and conversion programs were
at NAFEC and provided the described outputs:

EAIR program - provided unsmoothed positional coordinates

X, Y, Z, in one-tenth second increments, in binary or binary
coded decimal format. Data was usually rotated and trans-
lated to the reference coordinates of the ASR-S. Tapes and
hardcopy printouts were provided to TSC.

NAFEC Geodetic Position Coordinate Program - provided
coordinates for the Mizpah reference transponder relative
to the ASR-4 and ASR-5.

BCAS Data Reduction Program - converted the octal format
of the BCAS data tape to a specified hard copy printout
format.

BCAS-ARTS III Data Reduction Program - provided beacon-
only target report data and derived values of TOA and
DAZ. This program was used with the standard ARTS III
dual beacon data extractor and the TSC modified version
(A09).

BCAS-ARTS III Error Program - this program is an error
prediction model of ARTS III for inputs of aircraft
geometrics (2) and error statistics (slant range, azimuth,
and altitude). Predicted error statistics of ARTS III
derived range separation, time of arrival, and differen-
tial azimuth were obtained. Two versions of the program
were written; one to be used on the NAFEC 9020 computer
and another provided to TSC together with a typical case
printout.
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7.2 NAFEC DATA ANALYSIS

During the test program a number of different statistics were

computed.

1.

The major analyses made at NAFEC were:

Comparison of range and azimuth reported by ARTS III with
EAIR data.

Comparison of TOA and DAZ as measured by the BCAS equip-
ped aircraft, in flights past the fixed transponder at
Mizpah, with EAIR derived TOA and DAZ.

Comparison of TOA and DAZ as measured by BCAS with ARTS
III derived TOA and DAZ.

Comparison of ARTS. III, EAIR and Phototheodolite data for
the following purposes:

a. to qualify the ARTS III target report data in terms
of mean and standard deviation estimates for errors
in range, azimuth and differential azimuth

b. to investigate the correlation between different sets
of ARTS III azimuth data.
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APPENDIX A: POTENTIAL IMPACT ON BCAS PERFORMANCE DUE TO ATCRBS
IMPROVEMENTS/MODIFICATIONS

1. INTRODUCTION

A number of improvements and modifications are being imple-
mented or planned in the ATCRBS system to overcome or mitigate
present system problems. In this Appendix, a selection process is
carried out to determine which improvements have a potential impact
on BCAS operation and the related actions required. In FAA ORDER
6360 "Air Traffic Control Radar Beacon System (ATCRBS) Improvement
Program", the problems in the present ATCRBS system are identified
and described. To solve these problems, a number of solutions,
improvements and modifications are proposed, as described in the
above cited ORDER. In Table I are listed the identified problems
and in Table II are given, in matrix form, the proposed solutions
versus the problems to be solved. These various categories of
improvements/modifications are examined to determine which ones
have a potential impact on BCAS and deserve further studies and
analysis.

2. CATEGORIES OF ATCRB IMPROVEMENTS/MODIFICATIONS

As shown in Table II, ATCRBS improvements are divided in three
general categories:

CATEGORY A: - Alignment, Maintenance, Evaluation of Present
System.
CATEGORY B: - Optimization of Present System Environment.

CATEGORY C: - Upgrade System Hardware/Software.

Fourteen (14) propcsed improvements/modifications are listed
under these categories. In FAA ORDER 6360 a number of actions are
recommended under each of these 14 items. Only the relevant improve-
ments/modifications to the problem at hand were abstracted for
assessing their potential impact on BCAS performance. In Table III
these selected items are listed alongside with the identified po-
tential impact on BCAS and the actions to be taken. Four (4) items
appear to have a potential impact on BCAS operation:



TABLE I. DESCRIPTION OF ATCRBS PROBLEMS

False targets caused by
reflections

False targets caused by
sidelobes

Erroneous or missing Mode
C replies

Double targets
Azimuth splits

Loss of targets caused by
holes in coverage pattern

Range splits

Loss of targets caused by
reduced low-angle coverage

Phantom target reports
and garbled code data

False targets caused by
synchronous fruit and second-
time-around replies
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TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS

Category A, (Alignment
Maintenance, Evaluation)

Relevant ATCRBS
Improvements/Modifications

Potential
Impact on BCAS

Action Required

A,1. Test Equipment

1) Provide Properly Calibrated| e Upgrades Hardware Perfor- ® Beneficial e None
Test Equip. for Site Evalu-| mance
ation and Maintenance
A.2. System Performance/Certi-
fication Parameters
1) Upgrade Maintenance and ¢ Upgrades System Perfor- o Beneficial e None

Certification Proceedures

mance

A.3. Power Reduction

1) Reduce Power to Minimum
Requirements,Adjust DIREC/
OMNI. Power Ratio

® Reduces Interference
e Improves Side Lobe
Suppression

® Reduce Coverage Area.
o Reduces Range of SLS
Signal.

¢ Assess Impact
on Coverage

A.4. Transponder Improvement

1) Assure Proper Operation of o Tighten Federal Standards e Beneficial e None
Transponders. e Upgrade Testing

A.5 Site Standarization

1) Improve Cabling, Equipment e Improves Grounding, e Minimal e None
Interfaces Hardware Performance.

A.6. Site Technical Inspection

1) Provide Site Evaluation e Upgrades Maintenance, ® Beneficial e None

Routine

Performance
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TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

Category B, Optimization

of System/Enviroment

Relevant ATCRB
Improvements/Modifications

Potential
Impact on BCAS

Action Required

B.l. Parameter Optimization

1) Optimize Interrogator PRF, e Improve Target Detection o None-(Unless Such o None
Scan Rate, Mode Interlace, Validation Parameters are Used
Detection Algorithm a Priori)
B.2. Improved Site Environment
1) Reduce/Eliminate Effect of ® Remove Site Obstruction o None-(Unless Radar e None
Obstructions, Reflections. ¢ Shield Surfaces Location is Used a
e Relocate Radar Site if Priori)
Necessary
B.3. Discrete Code Allocation
o Allocate Codes To Avoid e Beneficial e None

1) Eliminate Duplication in
Code Assignaent

Duplication
o Allocate Code 1220 for
Permanent ECND
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TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

Category C. Upgrade System

Hardware/Software

Relevant ATCRBS
Improvements/Modifications

Potential Impact on BCAS

Action Required

C.1. Improved Antenna

1) Develop an Improved Antenna a) Minimizes Vertical Lobing {a) Beneficial a) None
System b) Incorporates Rotary Joint b) Unknown b) Assessment and
for Either "Integral" SLS Analysis
or Monopulse Operation
C.2. CD Modifications
® Beacon Reply Group Hardware | ¢ None e None
Modifications
C.3. ARTS Modifications
® Improve Target Detection e None o None
and Code Processing
C.4. Software Enhancement
e Improve Target Validation e None o None

and Monitoring

C.5 Interrogator Modifications

1) Modify Interrogator; Improve
Monitoring

a) Provide Stagger/Destagger
Capability to all ATCB1-3.
Stagger the Mode Interro-
gation Signals by at Leas*
25 usec.

b) Azimuth Gate the Power
Output or STC Curve To
Reduce Site Specific
Reflections and Synchron-
ous Interference From
Adjacent Overlapping
ATCRBS

a) Improves Radar
Selection/Discri-
mination

bl. None For STC
Gating

b2. If Power Gated
no Radar Signals
Available At Some
Azimuth.

None (Unless
PRF, Information
is used a Priori)

bl. None
b2. Site Specific

Study and Analysis
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TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

Category C. -CONTINUED

Relevant ATCRBS
Improvements/Modifications

Potential Impact On
BCAS

Action Required

c) Install False Target Sup-
pression Transmitter
(Trevose Fix) for ATCRBS
Sites with well Defined
Reflection Problem.
System Consists of a
Directional Horn and an
SLS/ISLS Transmitter Used
to Suppress Aircraft
Transponders in Area of
Reflection and False
Target Generation

c) Unknown-May
Generate Blind
Spot

c. Site Specific
Study and
Analysis.




POWER REDUCTION
IMPROVED SITE ENVIRONMENT

IMPROVED ANTENNA
. INTERROGATOR MODIFICATIONS.

0N w o
=N W

These four "filtered" items are summarized in Table IV for
further assessment and analysis.

The actions required can be divided into three areas.
a) wupdating BCAS files b) coverage studies c) ATCRBS signal struc-
ture,

a) UPDATING BCAS FILE B.1 PARAMETER OPTIMIZATION
(NO ACTION REQUIRED) B.2 TIMPROVE SITE ENVIRONMENT
C.5 INTERROGATOR MODIFICATIONS (a)

Category B.1 involves optimization of PRF, scan rate and mode
interlace; category B.2 relocation of radar site; category C.5. a,
installation of PRF stagger/destagger capability. At the present
time, BCAS operation is independent of such improvements/modifica-
tions. However, utilization of such information a priori would
require merely updating of BCAS file.

A.3 POWER REDUCTION (a), (b)
b) COVERAGE STUDIES C.5 INTERROGATOR MODIFICATIONS

(b2), (c)

In category A.3, power levels will be reduced to minimum
requirements to reduce interference. This will also reduce coverage
area. Therefore, BCAS coverage calculations should be based on
these eventual minimum range requirements. In category C.5. b2,
gating power at a specific azimuth will affect the corresponding
coverage area. This is a site specific problem that needs to be
analyzed for the impact it may have on BCAS operation in a particu-
lar area. Category C. 5c is also site specific and should be
analyzed for the specific conditions.




6-V

TABLE IV. SELECTED ATCRBS CATEGORIES WITH POTENTIAL IMPACT ON BCAS PERFORMANCE

Category

Relevant Improvements

Potential Impact on BCAS

Action Required

A.3. Power Reduction

a) Reduce Power Level to Mini-
mum Requirements

b) Adjust Directional/OMNI
Ratio to Required Standards

a) Reduce Coverage Area

b) Reduce SLS Signal
Detectability

a) Assess Impact
on Coverage

bl) SLS Signal
Detectability

B.l. Parameter Optimization

a) Optimize, PRF, Scan Rate
Mode Interlace

None (Unless Such Data
is Used a Priori)

None (Update BCAS
if Such Data is
Used a Priori)

B.2. Improved Site Environment

a) Relocate Radar Site if
Necessary

C.1. Improved Antenna

a) Minimizes Vertical Lobing

b) Incorporates Rotary Joint
for Either "Integral™ SLS
or Monopulse Operation

a) Improvés Reception
bl) Impact of "Integral"
SLS Unknown

b2) Fewer Pulses/Scan
Impact Unknown

bl) Assess lLmpact
"Integral" SLS

B2) Analyze Impact
Monopulse Opera-
tion

C.5. Interrogator Modifications

a) Provides Stagger/Destagger
Capability to All ATCB1-3

a) Improves Radar Selec-—
tion/Discrimination

b

~

c)

Stagger the Mode Interroga-
tion Signals By at Least 25
usec.

Azimuth Gate the Power Out-|bl) None for STC Gating
put or STC Curve to Reduce b2) For Gated Power Radar

site Specific Reflections
and Synchronous Inter-
ference From Adjacent Over-—

lapping a TCRB. c)

Install False Target Suppres-
sion Transmitter (Trevose Fix)
for ATCRB Sites with Well

Defined Reflection Problem.
System Consists of a Direc-
tional Horn and An SLS/ISLS
Transmitter Used to Supress
Aircraft Transponders in Area

of Reflection and False Tarzet

Generation.

Signals May-not be
Available at Some Azi-
muth
Unknown- (Intruder Air-
craft May Not Respond-
Blind Spot)

a) None (update BCAS
if Such Data is
Used a Priori)

b2) Site Specific
Study and Ana-
lysis

Site Specific Study
and Analysis




c) ATCRBS SIGNAL STRUCTURE C.1 IMPROVED ANTENNA (b1l), (b2).

Category C.1 improvements, if implemented, may result in
either "Integral" SLS and/or monopulse operation. The word "inte-
gral" implies that the phase centers of SSR main beam antenna and
the omni-directional antenna will be the same. This should provide
a better match between the main beam and the omni vertical lobing
pattern. However, with an "Integral" SLS, the side lobe suppression
signals may be available in a restricted azimuth only. Thus, an
assessment needs to be made of the resultant potential impact on
BCAS operation.

The impact of monopulse operation is also unknown and an
assessment needs to be made to determine the impact of this modifi-

cation on BCAS performance.



3. SUMMARY

The on-going improvements in the ATCRBS system were examined
and their potential impact on BCAS operation assessed. The
"seledted" improvements that might impact on BCAS operation are
summarized in Table V. Item 1 does not require any action since
in the present design BCAS operation is independent of these im-

provements/modifications. Updating of BCAS file would be required
only if such information were used a priori. TItem 2 requires over-
all and some site specific coverage studies. Item 3 requires

a) the assessment of "Integral' SLS on BCAS operation and b) an
evaluation of monopulse operation on BCAS performance.

On the basis of the above examinations of the planned ATCRBS

improvements/modifications, the two areas of potentially greatest
impact on BCAS operation are 1) implementation of an "integral"

antenna system and 2) monopulse operation in which fewer interro-
gations pulses per scan may be transmitted.

In the passive mode of operation, BCAS relies on the trans-
mitted interrogation and SLS signals for acquisition, and tracking
of ground radars, timing and bearing determination. Any such
planned improvements/modifications that result in modification of
these signal characteristics/patterns must therefore be thorough-
ly examined and evaluated.

P
'
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TABLE V. SUMMARY OF SELECTED CATEGORIES WITH POTENTIAL IMPACT ON BCAS OPERATION

Category

Relevant Improvements

Potential Impact on BCAS

Action Required

1. B.l Paramater Optimize, PRF, Scan Rate, Mode Beneficial None (Update BCAS File
Optimization Interlace if Such Information is
Used a Priori)
B.2 Improve Site Relocate Radar Site if Necessary Beneficial
Enviroment
Cs5 (a) Interrogator a) Provide PRF Stagger Destagger/| a) Improves Radar Identi-
Modifications Capability fication/Discrimination
2. A.3 (a) Power a) Reduce Power to Minimum a) Reduces Coverage Area a) Assess Impact on
Reduction Requirements Coverage~Range of

C.5 (b)(e) Interrogator

b) Azimuth Gate Power Output

b) Reduce coverage at

SLS Signals.

b) Site Specific Coverage

Modifications Some Azimuth Analysis
¢c) Trevose Fix c) Suppresses Transponder c) Site Specific Study
Replies at Some Azimuth- and Analysis
Impact Unknown ’
3. C.1 (b) Improved bl) "Integral" SLS bl) Unknown-Signals Radiate | bl) Assess Impact of
Antenna in Restricted Azimuth. antenna pattern

b2) Monopulse Operation

b2) Unknown-Fewer Pulses Per
Scan

b2) Assess Impact of
Monopulse Operation




APPENDIX B. FLIGHT TEST PATTERNS

PATTERN #1 - One or more aircraft. Approximately a 50 NM track
along low altitude airway V467 in the vicinity of Millville, New

Jersey. This airway utilizes the 047° radial and the 226° radial
of the Millville VORTAC, MIV, frequency 115.2, channel 99. Air-
space required: 30 NM NE to 20 NM SW. Altitudes, between 3500
feet and 21,000 feet.

PATTERN #2 - One or more aircraft utilizing the basic fix at Mill-
ville, New Jersey VORTAC, radial 040° - 055° - 220° - 235° (Figure
B-1).

Radius of action can vary to that desired for data collection
purposes. Airspace altitude required same as Pattern #1. This
pattern can be displaced and/or rotated to amny basic fix at any
location based on test requirements. Once aircraft are established
in basic figure eight, the pattern remains the same until test
requirements dictate otherwise.

FIGURE B-1. PATTERN #2
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PATTERN #3 - This pattern requires orbits, clockwise or counter-
clockwise around the modified beacon sites at Atlantic City, Phila-
delphia, and Newport (see test geometry chart). Radius of orbit
and altitudes will Vvary according to data collection and test re-
quirements. As other sites are modified, the pattern can be flown
at those locations, subject to airspace approval.

PATTERN #4 - This pattern can be flown by one or more aircraft
and is normally used to obtain maximum lock/unlock information.
Aircraft fly the normal enroute airway, V139, at various altitudes
and shuttle between maximum and minimum (unlock/lock) range up to
approximately 200 NM from NAFEC. The magnetic track from Atlantic
City is approximately 216°. Maximum distance is in the vicinity
of Norfolk, Virginia.

NOTE - These are the four basic patterns used in debugging and
actual data collection flights.



PATTERN #5 - This pattern will be used for multiple aircraft en-
counters within a 12 NM radius of the Millville VORTAC; however,

it can be adapted for use over any VOR/DME fix. This is a modified
rotating Double Daisy with each aircraft turning 30° in opposite
directions to achieve encounters over the fix in 60° increments.
Vertical separation between aircraft will be 400 feet and base
altitude can vary between the low stratum of 3000 to 15,000 feet,
or the high stratum between 18,000 feet and 23,000 feet. Planned
leg distance is 8 NM plus turn radius. It is desired that 12 runs
be flown at three different altitudes, low, medium and high. Twelve
runs will provide + 180° of coverage twice, for repeatability data
(See Figure B-2).

TABLE B-1. PATTERN #5

HDG. HDG.

ENCOUNTER A/C #1 A/C #2 INTRCPT ANGLE
1 270 090 180
2 060 300 120
3 210 150 60
4 360 360 0
5 150 210 60
6 300 060 120
7 090 270 180
8 240 120 120
9 030 330 60
10 180 180 0
11 330 030 60
12 120 240 120



A/C #1, LEFT TURNS
ENCOUNTERS 1 THRU 6.

ENCOUNTERS 7 THRU 12,
OPPOSITE DIRECTION OF
ARROWS.

fr

A

A/C #2, RIGHT TURNS
ENCOUNTERS 1 THRU 6.
ENCOUNTERS 7 THRU 12,
OPPOSITE DIRECTION OF
ARROWS.

1
=

060°

START A7C #2—>

FIGURE B-2.

PATTERN #5
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PATTERN #6 - This pattern will be used for two aircraft to obtain
radial environment data between the two modified radars located at
Atlantic City and Philadelphia, a one-way distance of 30 NM. Air-
craft #2 will be positioned 4 NM behind and 4 NM to the right of
Aircraft #1. Three round trip patterns will be flown, one at each
of three altitudes, 2000, 10,000, and 20,000 feet, I 500 feet.

PATTERN #7 - This pattern will be flown by two aircraft to deter-
mine multipath effects on the system performance. Altitude between
aircraft will be 400 feet to 800 feet vertically with the basic
altitude at three levels, 4000, 10,000 and 15,000 feet, I 500 feet.
Radius of operation will be within approximately 15 NM of the Mill-
ville VORTAC. Aircraft without RNAV equipment will utilize DME

and radials from the Millville VORTAC. Special requirements for
the test are dry land conditions. Pattern shown in Figure B-3.

TABLE B-2. PATTERN #6 AND #7

: o DME . N..M. HDG. HDG.

POINT FR FIX SPRTN A/C #1 A/C £2
0 6.9 0.5 180° 180°
1 3.9 ‘ 0.5 " Turn Turn
2 3.2 2.5 . 090° 270°
3 4.4 6.5 Turn Turn
4 4.7 8.5 180°  180°
5 6.0 - 8.5 Turn Turn
6 6.5 10.5 090° 270°
7 \ : 8.5 ©16.5 Turn Turn
8 8.5 - 16.5 290° 070°
9 2.5 5.0 ~ Turn Turn
10 1.5 3.0 360°  360°
11 7.1 - 3.0  Turn - Tumn
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PATTERN #8 - This pattern is identical to that described in pat-
tern #7 with the exception that special requirements dictate the
accomplishment over smooth water. Probable flight areas would be
over the Atlantic Ocean in warning areas 107 or 108, or over the
Delaware Bay. If RNAV is not available, DME/Radial from the
Atlantic City, Kenton, Sea Isle, Waterloo VORS or Dover TACAN
would have to be used for positioning. Pattern is shown in
Figure B-3.

TABLE B-2. PATTERN #6 and 7 APPLIES TO PATTERN #8 (Cont.)

DME N.M. HDG. HDG.
-POINT FR FIX SPRTN A/C #1 A/C #2
0 6.9 0.5 180° 180°
1 3.9 0.5 Turn Turn
2 3.2 2.5 090° 270°
3 4.4 6.5 Turn Turn
4 4.7 8.5 180° 180°
5 6.0 8.5 Turn Turn
6 6.5 10.5 090° 270°
7 8.5 16.5 Turn Turn
8 8.5 16.5 290° 070°
9 2.5 5.0 Turn Turn
10 1.5 3.0 360° 360°
11 7.1 3.0 Turn Turn

B-6
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PATTERN #9 - This pattern requires two aircraft capable of alti-
tude operation at 20,000 feet or better. Aircraft #2 will be
positioned one NM to the rear and 400 feet above aircraft #1.
throughout the flight. Both aircraft will start the pattern at
10,000 feet MSL over the Atlantic City VORTAC and climb outbound
to approximately 23,000 feet on the Atlantic City VORTAC 216°
radial to 145 NM DME. A left turn will be executed to proceed so
as to intercept the Atlantic City VORTAC 190° Radial at 145

NM DME. (This point is the 112° Radial of the Cape Charles VORTAC
at 71 NM DME). The flight will continue inbound toward Atlantic
City on the 190° radial and while inbound, will execute two one
(1) minute holding patterns to the west; one at 120 NM DME and
the other at 70 NM DME. The flight will continue past Atlantic
City to a point at 30 DME on the 010° radial of the Atlantic City
VORTAC at which the flight will terminate. Pattern is shown in
Figure B-4.

NOTE: Pattern requires penetration of warning areas 386, 107 and
108 and the Air Defense Identification Zone (ADIZ).



Warning Area Penetration:

W-386: from 26 nm DME CCV (112°R)
at 75° 30.0'W 37° 11.0'N
East to 71 DME CCV (112°R), turn North
at 74° 34.0'W 37° 04.5'N
Holding pattern orbit at 120 nm DME ACY
at 74° 34.1'W 37°28.8'N

W-108: (leave W-386): 88 nm DME ACY (190°R)

at 74° 34.2'W 38° 00.0°'N
Holding pattern orbit at 70 nm DME ACY
at 74° 34.2'W 38° 18.0'N
Leave W-108 42 nm DME ACY
at 74° 34.3'W 38° 45.0'N

W-107: From 20 nm DME ACY (109°R)

at 74° 34.4'W 39° 07.0'N
Leave W-107 15 nm® DME ACY
at 74° 34.4'W 39° 12.3'N

Atlantic Coastal ADIZ: From 32 nm DME CCV (112°R)

at 75° 23.7'W 37° 09.3'N
Leave ADIZ at 67 nm DME ACY (190°R)
at 74° 34.3'W 38° 21.3'N

And momentarily during second holding orbit
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FIGURE B-4. PATTERN #9
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PATTERN #10 - Rotating Double Daisy similar to PATTERN #5 except
encounter angles are 30° instead of 60°. Aircraft #1 will execute
all turns to the left and Aircraft #2 will execute all turns to the
right. Aircraft #1 commences flyfng from 10 NM west of the VORTAC
ground station to 10 NM east of the VORTAC station. While inbound
to the station from the west, the bearing is 090°, which is the

magnetic course he must fly to reach the station. After passing
the station and continuing eastward, his VORTAC bearing is 270°.
Upon reaching a point 10 NM east of the station, the pilot executes
a 195° turn to the left, intercepting and positioning the aircraft
inbound on the 075° radial of the station, or a bearing of 255°,
After each traverse of the VORTAC station, at the 10 NM point, the
pilot again executes a 195° turn to acquire a bearing to or a
radial from the VORTAC station displaced 15° from the previous one.
This process continues for a total of 12 transverses of the VORTAC
station to complete 360° of coverage.

Aircraft #2 starts the pattern flying from 10 NM east of the
VORTAC ground station to 10 NM west of the VORTAC station. While
inbound to the station from the east, his bearing is 270°, which is
the magnetic course he must fly to reach the station. After pass-
ing the station and continuing west bound, his bearing is 090°.
Upon reaching a point 10 NM west of the station, the pilot executes
a 195° right turn, intercepting and positioning the aircraft in-
bound on the 285° radial of the station, or a bearing of 105°.
After each traverse of the station, at the 10 NM point, the pilot
again executes a 195° right turn to acquire a bearing to or a radial
from the VORTAC station displaced 15° from the previous one. This
process, as that of aircraft #1, continues for a total of 12 traver-
ses of the VORTAC station of complete 360° of coverage.

Usually this pattern requires both aircraft to maintain a con-
stant airspeed, normally 150K, with 400 feet of vertical separation.
The exceptions are runs numbered 7 and 19, which are tail-chase
runs. During a tail-chase, aircraft #2 will increase speed to 230K
and start the turn-in at a point 14.3 NM from the station instead
of 10 NM. Aircraft #1 is designated as the control aircraft and

B-11



calls each mile mark during each run. This allows Aircraft #2 to
adjust speed so as to expect crossovers directly over the VORTAC
station., (See Figure B-5).

As can be seen looking at Table B-3, this sort of pattern
provides positive and negative intercept angle throughout a 360°
azimuth area in 30° increments.

PATTERN #11 - Two aircraft will be used for this pattern with the
standard 400 feet vertical separation between aircraft. Normal
operating area will be in the vicinity of the Millville VORTAC
within a radius of 15 NM at an altitude above 9500 feet MSL.

There are four types of encounter patterns to be flown, oscu-
lating (kissing), intersecting, coincident and reverse osculating.
Eight of each type will be flown, for a total of thirty-two pat-
terns with varying bank angles of 15°, 30°, 45°, and 60°, flown
on each type., (60° bank angle exceeds that authorized for trans-
port type aircraft, which is 45°). Pattern is shown in Figure
B-6 and Table B-4,.
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TABLE B-3. PATTERN #10

HDG. HDG.

#10 ENCOUNTER A/C #1 A/C #2 INTRCPT ANGLE
1 090 270 180
2 255 105 150
3 060 300 120
4 225 135 90
5 030 330 60
6 195 165 30
7 360 360 0
8 165 195 30
9 330 030 60
10 135 225 90
11 300 060 120
12 105 255 150
13 270 090 180
14 075 285 150
15 240 120 120
16 045 315 90
17 210 150 60
18 015 345 30
19 180 - 180 0
20 345 015 30
21 150 210 60
22 315 045 90
23 120 240 120
24 285 075 150
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TABLE B-4. PATTERN #11
Stagin
Point (SP)
# TYPE SP-HDG/DME/RADIAL SP-HDG/DME/RADIAL BANK ANGLE
1 0 246°-2.7-336° 246°-8.0-156° 15°
2 1 246°-2.7-336° 246°-5,3-156 15°
3 C 246°-2.7-336 246°-2.7-156 15°
4 RO 246°-2.7-336 066°-8.0-156 15°
5 0 246°-1.1-336 246°-3.3-156 30°
6 I 246°-1.1-336 246°-2,2-156 30°
7 C 246°-1.1-336 246°-1.1-156 30°
8 RO 246°-1.1-336 066°-3.3-156 30°
9 0 246°-0.7-336 246°-2.0-156 45°
10 I 246°-0.7-336 246°-2.0-156 45°
11 C 246°-07.-336 246°-0.7-156 45°
12 RO 246°-0.7-336 066°-2.0-156 45°
13 0 246°-0.7-336 066°-2.0-156 60°
14 1 246°-0.3-336 246°-0.7-156 60°
15 C 246°-0.3-336 246°-0.3-156 60°
16 RO 246°-0.3-336 066°-1.1-156 60°
17 0 336°-2.7-066 336°-8.0-156 15°
18 I 336°-2.7-066 336°-5.3-246 15°
19 C 336°-2.7-066 336°-2.7-246 15°
2) RO 336°-2.7-066 246°-8.0-246 15°
21 0 336°-1.1-066 336°-3.3-246 30°
22 1 336°-1.1-066 336°-2.2-246 30°
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TABLE B-4.

PATTERN #11 (CONT.)

Staging
Point (SP)

# TYPE SP-HDG/DME/RADIAL SP-HDG/DME/RADIAL BANK ANGLE
23 C 336°-1.1-066 336°-1.1-246 30°
24 RO 336°-1.1-066 246°-3.3-246 30°
25 O 336°-0.7-066 336°-2.0-246 45°
26 1 336°-0.7-066 336°-1.3-246 45°
27 C 336°-0.7-066 336°-0.7-246 45°
28 RO 336°-0.7-066 246°-2.0-246 45°
29 0O 336°-0.3-066 336°-1.1-246 60°
30 I 336°-0.3-066 336°-0.7-246 60°
31 C 336°-0.3-066 336°-0.3-246 60°
32 RO 336°-0.3-066 246°-1.1-246 60°
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PATTERN #12 - See Figure B-7. Two aircraft will be required for
the climb-dive tests. Normal operating area will utilize the
basic figure eight pattern using the Millville VORTAC radials

040°, 055° - 220° - 235° with legs * 10 NM in length. Altitude
will vary 12000 feet of an optional basic altitude. Maneuvering
aircraft, Aircraft #1 and/or Aircraft #2, when changing altitude
will establish a change rate of 2000 feet per minute with lateral
separation of one-half NM or less during vertical cross-overs. The
two basic patterns will be head-on and same direction parallel
flights. In each type, runs will be made with one aircraft level
while the other is climbing and diving and with both aircraft
climbing and diving simultaneously in opposite vertical directions.

Type of encounters within figure eight:

A. PARALLEL. A/C #1 remains level at 8000'. A/C #2 ini-
tially at 10,000'. Will descend to 6000' NE BOUND. Will
climb from 6000' to 10,000' SW BOUND. (approximately 2
to 4 runs).

B. PARALLEL. A/C #1 climbs from 6000' to 10,000' SW BOUND,
A/C #2 descends from 10,000' to 6000' SW BOUND. NE BOUND
A/C reverse. A/C #1 descends from 10,000' to 6000' and
A/C #2 climbs from 6000' to 10,000' (approximately 2-4

runs).

C. HEAD-ON. A/C #1 remains level at 8000: A/C #2 will de-
scend from 10,000' to 6000' NE BOUND, and climb from
6000' to 10,000 SW BOUND. A/C will utilize opposite
radials toward each other (approximately 2-4 runs).

D. HEAD-ON. Both A/C will climb and descend between 10,000
and 6000'. When A/C #1 is descending, A/C #2 will be
climbing § vice versa. (Approximately 4 to 6 runs).

NOTE: Actual leg lengths will probably be within * 10nm of the
station, to allow aircraft to position themselves for X-
overs at the station at 2000 FPM rate of climb or descent.
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AJCH#2 10, 000" SW Bound A/C#l 10,000 A/CH#2
A/C#1 tation , tation A/C#1 | NE Bound 8,050'
vy 8,000 - SW Bound
(LCAS)
N 48
6000 Arcta
NE Bound A/C#2 6,000' A/CH#1
A/CH2 10,000' 10,000
NE Bound
A/C#1 A/C#2
A/Cc#l 8,000' A/c#1 \ Station 8,000’ ]
‘ * station Station
SW Bound NE Bound
A/Ci#2 A/C#1
alch2 ®
6000 SW BOUND 6,000’

FIGURE B-7.

PATTERN #12



PATTERN #13 - This pattern requires three (3) aircraft with all
available NAFEC tracking facilities. The basic fix to be used is
the Atlantic City VORTAC. Due to known tracking acquisition prob-
lems, the pattern shall be flown below 5000 feet within a 20 NM
radius of the Atlantic City VORTAC. There are four basic patterns,
head-on, head-on/90°, tail chase and holding. A basic figure
eight is utilized for the first three types. 1In each type of pat-
tern, three airspeeds are used, 150K, 230K and 300K, with vertical
separation between aircraft varying between 1000' and 400°'.

Radius action of each aircraft will vary according to speed with
the cross-over point over the vortac. (Figure 8 and 9).

Four (4) basic patterns:

A. Head-On
B. Head-0On/90°
C Tail Chase
D. Holding

Airspeed/Radius (Add turning radius)

150K/10nm

230K/15.3nm

300K/20nm
Altitudes

For each basic pattern, A thru D, there will be four (4)
encounters at various altitudes.

A/C #1 A/C #2 A/C #3
1. 3000° 4000" 5000
2. 3000° 4000" 4400"
3. 3600 4000" 5000
4. 3600° 4000° 4400"



HEAD-ON

HEAD-ON/90

FIGURE B-8. PATTERN #13 (HEAD-ON, HEAD-ON/90°)
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TAIL CHASE

HOLDING
1 MINUTE PATTERN

FIGURE B-9. PATTERN #13 (TAIL CHASE, HOLDING)
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1. Heading 004° 30nm S to 30nm N of PHL
2. Heading 184° 30nm N to 30nm S of PHL
3. Heading 184° 30nm N to 30nm S of TVS
4. Heading 004° 30nm S to 30nm N of TVS
5. Heading 184° 30nm N to 30nm S of ACY
6. Heading 003° 30nm S to 30nm N of ACY

7. Heading 227° 30nm NE to 30nm SW of MIV (V467)
8. Heading 046° 30nm SW to 30nm NE of MIV (467)
9. Heading 080°-090° from OOD to 50nm East

10. Heading 260°-270° from 50nm East to 0OD

11. Heading 184° 30nm N to 30nm S of NPT

12. Heading 004° 30nm S to 30nm N of NPT

When coordination is initiated for these tests, PATTERN #14
will be referred to, with the flight path desired given by numeri-
cal sequence of events required for data acquisition. Altitude
desired and any deviation from those shown will be coordinated and
clarified during the original request call.

EXAMPLE: Previous flights have been conducted IFR at 4000' and
5000' as follows: 13-1-2-13-5-6-7-8-13, or ACY 13 to 1 30 S of
PHL to 30 N of PHL, 2 30 N of PHL to 30 S of PHL, 13 to ACY, 5 to
20 N of ACY to 20 S of ACY, 6 20 S of ACY to 20 N of ACY, 7 30 NE
MIV to 20 SW MIV, 8 20 SW MIV to 30 NE of MIV, 13 to ACY-terminate.
NOTE: ©5-6-7-8 deviated from the 30nm to the 20nm points. This

in some instances will produce the required results, and would be
noted during the initial coordination call.

One proposed plan, when Trevose is modified, will be as
follows: 13-1-31-3-5-6-7-8-13. The flight path is on Figure B-10.

The flight plan request would be as follows: ACY 13 to 1, 30nm S
of PHL to 30nm N of PHL, to 3 30 N of TVS to 30 S of TSV, to 1



AIRCRAET: 1Initial Start Point = IP

ALTITUDE AIRSPEED
High = H Fast = F
Center = C Medium = M
Low = L Slow = §

PATTERN #14. North Pulse Kit Installation § Interface Tests. Kits
are or will be installed on radars at Philadelphia;
Trevose, Atlantic City and Newport (mobile). ACY is
shown on Figure B-10 at 0 mileage point of North/
South radials, 004° § 184°,

Patterns usually consist of *+ 30nm of site, on a
magnetic track of 004° § 184° (North pulse beam
width is 8° wide, from 0° cw to 008°).

When all four kits are installed, patterns are desir-
ed N§S each site, plus 30NM NE and 30NM SW of MIV on
V467. In addition, a radial off of OOD may be re-
quired, either the 080° R or 090°R to a point 50nm
East.

The 00D and MIV radials are required to bisect the
radar positions at various angles to acquire the
requested test data.

Explanantion of numbers on Figure B-10

NUMBER

13. Atlantic City ACY
14. Newport NPT
15. Philadelphia PHL
16. Trevose TVS
17. Millville MIV
18. Woodstown 00D
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30 S of PHL to 30 N of PHL, to 3 30nm N of TVS to 30nm S of TVS,
to 5 30nm N of ACY to 30nm S of ACY, to 6 30 S of ACY to 30nm N
of ACY, to 7 30nm NE MIV to 30 SW MIV, to 8 30nm SW MIV to 30nm
NE MIV, to 13 ACY, land.

Runs 11 § 12 could be added into the sequence, if mobile unit
is in position and modified. (30nm T Newport).

PATTERN #15. 2 A/C Formation, Round-Robin. Altitude 24,000 Feet
Speed 250 KWTS. A/C #2 one (1) mile to the right
and one (1) mile behind A/C #1. Depart ACY to DCA,
BOS via PHL § JFK, return to ACY.

Sample Flight Plan: ACY V184 MIV, V16 ENO, J37
OTT, RV EMI, J6 RBV, J80 JFK, J48/J77 BOS, J55 SIE,
RV ACY. (Figure B-11).
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APPENDIX C
THREAT LOGIC *
1. INTRODUCTION

This section describes the threat declaration and evasion logic
implemented in the experimental BCAS system. One of the ground-
rules for the development of this test system was that the threat
logic used must approximate as closely as possible ANTC-117, the
threat logic developed for range/range rate CAS systems. The
threat declaration and evasion logic described attempts to do just
that, and therefore retains some of the limitations of ANTC-117.

2. DATA AVAILABLE TO THREAT LOGIC

The data available to the threat logic with respect to each
Global Track includes the following items:

1. TOA History - The last three TOA values measured with respect
to the interrogations from each radar included in the Global
Track and the time of each measurement.

2. DAZ History - The last three Differential Azimuth values mea-
sured with respect to each radar included in the Global Track
and the time of each.

3. Active Range History - The last three range measurements obtain-
ed by active interrogations (if any) by own aircraft and the
time of each.

4. Altitude - The current extrapolated altitude (and altitude
rate) of the track.

5. Identity - The Mode-A code associated with the Global Track.
3. CLASSIFICATION OF INTRUDERS
3.1 RANGE, TOA AND DAZ CLASSIFICATION

ANTC-117 used three criteria to evaluate the measured range
and range-rate data and to classify the intruder into "Tau'' cata-
gories. These are:

*
B. Hulland, Litchford Electronics.

C-1



1. If the measured range is less than 0.5 nmi., a "Tau 1" condi-
tion is declared.

2. If -(range - 0.25 nmi.)/(range-rate) is less than 25 seconds,
a "Tau 1" condition is declared.

3. If -(range - 1.8 nmi.)/(range-rate) is less than 40 seconds,
a '"Tau 2" condition is declared.

4. 1If none of the above is true, no "Tau'" condition is declared
and the intruder is not further processed.

A similar classification is done by the experimental BCAS
system. However, three "Tau" catagories are defined, and the logic
to classify a track is more.complex. 1In this classification the
active range measurements (if any) are processed exactly like TOA
measurements from an additional radar. Since the various measure-
ments are made at different times, they are extrapolated linearly
to the current time using the last two measured values in each case.
The criteria used for each intruder are:

1. 1If all the TOA values are less than 6.1 us (microseconds), a
"Tau 0" condition is declared.

2. For each radar, two values are computed (only the first for
active interrogations):
1) -(TOA-3.0 us) (Dif Time)/(Dif TOA)
2) -(DAZ) (Dif Time)/(Dif DAZ-[0.7 deg][Sign of DAZ])

where "Dif" means the change in the specified value between
the last two measurements (i.e., Dif Time is the time between
measurements). If all of these values are less that 25 seconds,
a "Tau 1" condition is declared.

5. For each radar, the following value is computed:
-(TOA-22.0 us) (Dif Time)/(Dif TOA)

If all of these values are less than 40 seconds, a "Tau 2"
condition is declared.

4. 1If none of the above is true, no "Tau'" condition is declared
and the intruder is not further processed except in deciding

whether to interrogate actively.
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It should be noted that in all subsequent processing, a ''Tau
0" condition is treated exactly the same as a "Tau 1" condition;
the distinction is made here only for convenience in programming.

If an intruder is being tracked only via active interrogations,
this classification is exactly equivalent to that of ANTC-117
except that the range rate is obtained by subtraction of successive
range measurements rather than from a Doppler measurement.

3.2 ALTITUDE CLASSIFICATION

ANTC-117 further classifies intruders in terms of their al-
titude relative to own altitude, and in terms of own altitude and
altitude rate. The experimental BCAS system classifies them in
exactly the same way as ANTC-117 in this respect. (This means
that it ignores the intruder's altitude rate, even though that data
is readily available in the experimental BCAS.) This classifica-
tion is as follows:

1. If the difference between the intruder's altitude and own
altitude is greater than 3300 ft., the intruder is not further
considered by the threat logic.

2. If the difference between the intruder's altitude and own
altitude is less than 900 ft. (700 ft. if own altitude is less
than 10,000 ft.), the intruder is classified as "Coaltitude".

3. If adding the change in own altitude in the last 30 seconds
(or less) to current own altitude would make the intruder
"Coaltitude'", the intruder is classified as "Predicted Coalti-
tude'.

4, If the intruder is not "Coaltitude'", it is classified in terms
of the difference between its altitude and own altitude as:
1<1400 ft" if the difference is less than 1400 ft.,

"<1900 f£tm if it is less than 1900 ft. or
"'<3400 ft" otherwise.

-



4, TIE BREAKING

The one other piece of information needed by the evasion
logic is whether the intruder is "Above" or "Below" own. In most
cases this presents no problem.' However, if an intruder classified
as Tau 0, 1 or 2 is reporting its altitude exactly equal to own
altitude, a decision must be made whether to consider it as above
or below; and if that intruder is also equipped with a BCAS,
the decision must be coordinated with it so that both aircraft
will not climb (or both dive). This process is known as tie-
breaking.

To make possible the required coordination, the experimental
BCAS adds pulses to its own Mode-C replies to all interrogations
whenever it detects one or more Tau 0, 1 or 2 intruders within
3300 ft. or its own altitude. It does this as follows:

1. If the two most threatening intruders are actually (or are
considered to be due to tie-breaking) ABOVE own or if the
BCAS is giving a DIVE command, the "X Pulse'" will be transmit-
ted,

2. If the two most threatening intruders are actually (or are
considered to be due to tie-breaking) BELOW own or if the
BCAS is giving a CLIMB command, the "X Pulse" and the 'D1
Pulse" will be transmitted.

3. If neither of the above is true, the "Dl Pulse" only will be
transmitted as an indication that the BCAS has detected a
potential threat, but has not yet decided on a maneuver direc-
tion.

These three conditions will be referred to as transmitting DOWN,
UP and WARN respectively.

The tie-breaker logic used in the flight test system is the
following:

1. If the intruder at own altitude is not transmitting UP or
DOWN and own is currently transmitting UP, consider the intrud-
er as BELOW own.



2. If the intruder at own altitude is not transmitting UP or DOWN
and own is currently transmitting DOWN, consider the intruder
as ABOVE own.

3. If the intruder at own altitude is transmitting UP and own is
not currently transmitting UP, consider the intruder as ABOVE
own.

4, If the intruder at own altitude is transmitting DOWN and own
is not currently transmitting DOWN, consider the intruder as
BELOW own.

5. If the Identity of the intruder at own altitude (Mode-A code)
is numerically less than own's Identity, consider the intruder
as BELOW own.

6. If the Identity of the intruder at own altitude (Mode-A code)
is numerically greater than own's Identity, consider the
intruder as ABOVE own.

7. If none of the above rules yield a decision, make a 50-50 ran-
dom choice whether to consider the intruder at own altitude as
ABOVE or BELOW. The present program makes that choice by
computing the parity of the word "IMSHT" which is incremented
every 9.5 ms.

Note that no provision is made in this program to handle the case
where more than one intruder is at own altitude. 1In this case, all
but one (generally the most threatening one) of the intruders at
own altitude are treated as though they were ABOVE own, and the

one is treated as described above.

5. EVASION LOGIC

The experimental BCAS, like ANTC-117, provided a matrix of
responses to all possible combinations of threats from one or two
intruders. The matrix used by this program is essentially identi-
cal to ANTC-117. 1In case there are more than two intruders, the
two most threatening are selected, and all others are ignored. The
following pages are a listing of the response matrix.



NOTE: "LVS" stands for "Limit Vertical Speed to the values below".

"N/A means an impossible condition. (See Figures C-1, 2, and
3).

6. INTERROGATION CONTROL

The final function performed by the threat logic in the
experimental BCAS is to control whether or not active interroga-
tions are transmitted. The only portion of this function that
need be commented on here is the ""Interrogate on Threat'" decision.
When this mode is selected and interrogations are not required by
the lack of sufficient radars, all intruders within 3300 ft. of
own altitude are examined to see if they will be either Tau 0, Tau
1 or Tau 2 (ignoring any data from active interrogation) within
the next 10 seconds. If so, active interrogation is selected.
(The exclusion of data resulting from active interrogations is to
prevent an unstable condition that would occur if an intruder was
classified as Tau 2 with the interrogator off, but no threat with
the interrogator on.)
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APPENDIX D
RANGE-BEARING COMPUTATIONS

D.1 INTRODUCTION

The range and bearing to a threat aircraft are not currently
computed by the BCAS system in flight. . Instead sufficient data
are recorded to allow after-the-fact computation, based on the
measurements made in flight.

A Toutine to carry out the range and bearing calculations had
been developed in the course of work preceding the current con-
tract, and had been used to track aircraft observed by the demon-
stration BCAS system placed on ten of the Pan Am buildings. In
the configuration of radars and aircraft encountered there, it had
operated satisfactorily. The routine was made available by Mega-
data.

At TSC a simulation program was written to test the accuracy
of the solutions and the degree to which they were affected by
errors in the measurements on which the calculations were based.

Test runs showed that the PASIVE subroutine contained errors.
In trying to find the causes of these errors, the documentation
supplied with PASIVE was not helpful. Much of it was unrelated to
the actual program, and the algorithms described themselves were
incorrect.

Two things were clear fairly early:

1. that the problem was rather complicated, due largely to
numerical instability in directions near the radars

2. that, when PASIVE was written, the difficulties were not
recognized.

PASIVE consisted of three parts:
1. a selection of two radars to use for initialization
2. 1initialization

3. iteration using a hill-climbing technique.
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there will be garble in this configuration. Here the best choice
of radar pairs is probably Gl’ G3. What follows is a discussion
of the remaining parts of NUPAS, which may be considered to be in
final form except for program implementation details, a comparison
with the original Megadata-supplied range-bearing calculations
program PASIVE; and a discussion of the problems inherent in the
task.

D.2 SIMULATED INPUTS

NUPAS has been tested with simulated inputs. This means that
some configuration of radars and aircraft is assumed and the
azimuth, differential azimuth, and TOA measurements that the BCAS-
equipped aircraft would make are calculated. Some known "error"
can then be added to the computed values to simulate measurement
noise. The simulated measurements are used as inputs to NUPAS,
and the range and bearing to the threat aircraft from the BCAS
aircraft, as well as the ranges to the ground radars, are calcu-
lated. The calculated results are compared and with the configura-
tion initially assumed to determine the error in the NUPAS results.

With error-free measurements NUPAS produces essentially per-
fect results (errors in range to the threat of less than a foot
and bearing errors of less than 0.1°) in most configurations.
NUPAS tends to fail (i.e., calculates positions for the threat
some 1000' from the "true position", 3 nautical miles from own)
when the threat aircraft is between the BCAS aircraft and one of
the locked radars, or in a sector within about 20° of the radar,
viewed from own. The reason why this occurs is described below.

With error-corrupted measurements NUPAS still produces good
results. The precise magnitude of the error in the computed posi-
tion due to error in the input quantities is a function of the
geometry in each case. NUPAS has been exercised using three sim-
ulated radars about the BCAS position, always selecting two for
calculations. Simulated errors of +.27u sec for TOA, + 75 ft for
altitude of own and others, and + .15° for azimuth and differential
azimuth were introduced in various combinations.



In the simulations, these errors were introduced as fixed
quantities added to the values that the '"measurements' should have
in the assumed geometry. The magnitude of the "errors" corresponds
roughly to the RMS errors (i.e., the ¢) of the measurements made by
the BCAS system.

No combination of these errors resulted in computed bearing
errors of more than two degrees in any geometry tested. The range
error was significantly affected only by errors in the TOA measure-
ments. The other errors resulted in computed range errors of some
tens of feet. The TOA errors results in range errors of generally
less than 200 feet. A small set of geometric configurations
resulted in range errors of about 500 feet. It is believed that
these errors can be attributed to a bad selection of radars.

All calculations were completed in two or three iterations.

D.3 FLIGHT TEST DATA INPUTS

A set of programs have been written to extract target reports
from the BCAS magnetic tapes and construct disk files, sorted by
intruder transponder codes. These files serve as inputs to a
program using NUPAS to construct intruder trajectories, i.e.,
plots of range and bearing to the target as a function of time.
These plots, given ARTS separation data for comparison, are pre-
sented elsewhere in this report.

I. The Nature of the Problem and an Overview of the Solutions

Let n > 2.

Given n radars Gl,---,Gn (assumed to be at sea level) let
(for 1 < i < n)

By = the bearing of Gi from own

a; = the differential azimuth, with respect to Gi’ from own
to other

Ti = the time of arrival (or delayed time of arrival or TOA)

with respect to Gi‘



Furthermore let

r = the horizontal distance from own to other

8 = the bearing of other with respect to own

H = the altitude of other

H0 = the altitude of own.

Given Bi’ s Ti’ H and Ho’ the problem is to compute r and 8.

- It is not difficult to find a function F such that, for each
i, T; = F(r,e,ai,B,Ho)- Thus the problem reduces to solving

this system of n equations for the two unknowns r and 6.

Unfortunately the function F is complicated; so if the system
has a closed form solution, it is not easy to find. It seems,
then, to be necessary to resort to numerical methods.

The notation and choice of variables ﬁsed here is different
from that of PASIVE because PASIVE uses rectangular coordinates.
PASIVE's notation will be translated to cylindrical coordinates
here in order to simplify this exposition:

a) The Method of PASIVE

First a function f is defined such that, for small values of
o; and values of H and Ho that are not too large, f(r,e,Bi,H,Ho)
is a decent approximation to F(r,e,ai,Bi,H,Ho). In physical terms,
f(r,e,Bi,H,Ho) is the expression for the TOA in a geometric situa-
tion in which the radar is at an infinite distance. Then the
locus of intruder position leading to a constant observed TOA is a
paraboloid of revolution, not an ellipsoid of revolution. Then two
radars Gu and Gv are chosen and the system of equations

Ty

f(r,e,Bu,H,Ho)

Ty

£(r,0,8,,H,H)
is solved, in closed form, for r = r 8 =8

0’

n
Let G(r,8) = ;;1 (F(r,e,ui,Bi,H,Ho] - Ti)z. If (r,8) solves
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the system

F(r’e,aixsi,HyHo) = T. 1 < i <n

then G(T,6) = 0. This suggests that the system may be solved by
minimizing G.

Let 6 (x,y) be such that\/x +y~ cos 6(x,y) = x and x2+y2
sin o x =y (e[x y) is well-defined modulo Zn) and define u(x,y)=

C( X +y s e(x,y)) u is just the rectangular coordinate version
of G.

If u achieves a minimum at (X,¥) then %% (x,y) = %% =,y

2 2
Let V(X,YJ = (g_: [X’Y)) + <a_u (X’Y)) °

PASIVE proceeds to compute (X,y) by solving v(x,y) = 0

Let Vv(x,y) denote the gradient of v at (x,y). Suppose that,
after the iEh iteration, the approximate solution to v(x,y) = 0 is
(xl,y ). PASIVE computes a vector Wl that is presumably an approx-
imation to the appropriate Newton- Raphson multiple of Vv(x Y5 )
and obtains (x1+1,y1+1)+ (xl,y ) + w1 The iterations contlnue
until either i = 20 or LA is sufficiently small.

b) The Method of NUPAS

As in PASIVE, two radars G and Gv are selected (but differ-
ently) for initialization. Assume, for simplicity, that py = 1 and
v = 2,

The NUPAS initialization occurs in two stages. 1) The same
function f chosen by PASIVE is used by NUPAS and the resulting
system of two equations in two unknowns is solved for ry, = fo’eo =
'50. ii) The values ro’eo are used to estimate F(r,e,ai,Bi,H,Ho) -
f(r,e,Bi,H,Ho) for i = 1,2. This 'error' is then absorbed by the
given parameters Ti which leads to a system of equations

T; = £(,6,8;,H,H) i=1,2

which is then solved for r = T,» 8 = 60. The iteration will begin
here.



In the iteration, NUPAS uses only the two radars G1 and G2
in order to avoid certain complications.

Let M(r,8) denote the 2 x 2 matrix

9F oF
5; (r,esalyslsH’Ho) 55 (r’e’alsslvﬂ’Ho)
oF oF
5? (r’e’aZ’BZ’H’HO) 55 (r,e:aZ’BZ)HsHO)

I1f, after the ij:—}—l iterative step, the approximate solution is

[ri,ei), (ri+1’ei+1) is defined by the matrix equation

ir1\ [Ti LT
= + M(r,8)

®i+1/ \°i Ty - Flry»85,05,8,.H.H,)

T - P(ri’ei’al’sl’H’HO)

Originally, the iteration was stopped if
i) i = 20

ii) r.

i+1 - T3 and 8,,, - 8; were both sufficiently small or

1 i
iii) (F(ri+1,91+1,a1,81,H,H0), F(ri+1,ei+1’a2,62’H’Ho))
was further from (Tl,Tz) than

’ .,
CF(r;,0;,07,81,H,H)), F(r;,0;,a,,8,,H,H)) is.

The new criterion is based on the following observations: The
iteration is along a vector field.

If (r,6) is the solution to the system of equations then
(r,6) is, of course, a sink of this field, but it is mnot the only
sink. In particular (-r,8), (which is geometrically meaningless)
and (r,m+6) are both sinks. If either of these two additional
sinks is chosen by the iteration, the computed position of other
will be the reflection about own of the true position.

Fortunately it is not difficult to tell, from the input data,
if this reflection has been computed. Then the program can cor-
rect the 'mistake' of iterating the wrong sink. This eliminates
one of the reasons for checking the results after each iterative
step and then deciding whether or not to continue.



The new algorithm stops iterating when either 20 iterations
have been made or when the previous iteration effected a very
small correction. The change has resulted in fewer but wilder wild
points.

IT. The Need for Changing PASIVE and the Limitations of NUPAS

a., Radar Selection

PASIVE selects, for its initialization procedure, the radar
with the largest TOA and the radar with the smallest TOA. Pre-
sumably the reason it does this is to get radars whose difference
in bearing from own is large enough. The problem is that the most
significant factor for inducing initialization error is the small-
ness of the smaller TOA. Thus, in an environment where there are
many radars to choose amongst, PASIVE's selection almost maximizes
the initialization error. (The reason for this will be discussed
in b).) The problem becomes even more serious when garble is
considered.

An algorithm that avoids this problem has been developed and
incorporated in NUPAS. As discussed above, this algorithm too
must be considered preliminary in that it does not consider all
aspects of the BCAS system.

b. Initialization

Let R(r,8,a,B) = ?11;1—(1 sin(a+B-6) and, for i = 1,2, let
ii = R(r,e,ai,si). The law of sines shows that ﬁi is the horizon-

tal distance from own to the radar Gi’

The law of cosines and some algebraic manipulation show that

2 2 2
T. = r - ZI'Ri Cos(G-Bi) + H™ - Ho
1
=2 2 L3 _ 2 2 2
RS+ r ZRir cos (8 Bi) + H® + Ri + Ho

+-VG2 + (H-Ho)Zr



Then

F(r,6,0;,8,,H,H) =

2 .2
rz-ZrRi(r,e,aifsi)cos(e-ﬁi)+H -H0

2 2.2
‘/Ri (r,6 2G4 ’Bi) Z"'rz'ZRi (r,® ) Bi)TCOS (9‘31)"'“ +'fRi (r,6 2Cgo Bi) +HO

+Vr2 + (H—Ho)2

If it is assumed that ﬁ >> r,H,H  then the denominator of the
first term of F 1s close to Zﬁ and the definition f(r,6,8,H,H ) =
-r cos(68-B) + Vr +(H-H )2 [recall f(r,o »B;,H,H ) is supposed to be
an approximation to F(r 8,0. ,6 ,H,H )) becomes obv1ous Note that
this approximation becomes weaker as the ratio r +H2 H becomes

larger. ZRi

Let A

1 - cos(B,-B;)

Ve ((T1+T2]2 . (4-2A)T1T2-2A(H-H0)2) and
2(T,+T
W= —(—l—z) J(4 2A)T, T+ (A%-2A) (H-H RE
X

The system of simultaneous equations

T, = £(r,0,8;,H,H)) i=1,2

has two solutions, (r,8). The two values of r are given by V+W
PASIVE made an algebraic mistake which NUPAS corrects.

To arrive at r it is now necessary to choose between\fvrw and
-VVTW} PASIVE produced wild points in good geometric configura-
tions because it did not always make this choice correctly. NUPAS
has a different algorithm for making the choice.

Once r is known it is not difficult to solve for 6.
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It was mentioned earlier that the approximation
F(r,e,ai,si,H,Ho) ~ f(r,e,Bi,H,Ho) becomes weaker as
2 2

r- + H" - HO

2R,
i

becomes larger. This observation is important because

1. if H and Ho are large, HZ-Hg can be significant even if
H-Ho is small.

z. for reasons that will be gone into shortly and in c) it
is important to have a good initialization if one of the
TOAs is small.

NUPAS uses the (r,®) computed above to compute numbers Ti in
such a way that the correct solution of the system Ti = f(r,S,Bi,
H,Ho) will be a better initialization than the one previously
computed.

The following is one reason why special care is needed when 6
is close to one of the Bi’s, i.e., when the intruder is approxi-
mately in the direction of one of the radars when viewed from the
BCAS aircraft.

It is true that the approximations F(r,e,ai,ei,H,Ho) ]
f(r,B,Bi,H,HOJ are fairly good. However it does not necessarily
follow from this that the solution of Ti = F(r,B,ai,Bi,H,Ho) i=i,2
f(r,B,Bi,H,HO) i=i,2.
It would follow if the determinant of the derivative matrix

is necessarily close to a solution of Ti

af of

’a—r (.rre’s.l ’H’HO) 3_9 (T’e ’Bl sH’HO)
of H.H of

5T (r,eaBZ’ ’ 0) 30 (_I‘,O,BZ,H,HOJ

were not too small.

But this determinant will be 0 when

B,-B B,+8B
Vrz*(H,Ho) COS(—gz—l) = T cos (8- 12 2).
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If H-= Ho this occurs when 6 = 61 and when 6 = BZ'

This is one of the reasons that NUPAS (and PASIVE) had dif-
ficulties when the bearing of other is close to the bearing of one
of the radars. Note also that, when |H-Ho| becomes larger, the
center of the numerically unstable ranges moves a bit from the

directions of the radars.
c. Iteration:
i) PASIVE
See I,a) for notation.

It was mentioned there that PASIVE does not iterate along Vv
but rather (at the mEh iterative step) along a vector Wm.

Suppose that, at the mI;-E iterative step, (rm,em) is the

approximation to the solution. For 1 < i < n,

T

m m .
S- = —.—‘_“S .+ « =
i sino; 1n(a1 By em)

is an approximation to ﬁi’ the horizontal distance to the iy-l radar.

PASIVE obtains the vector ﬁi by computing Vv under the assump-
tion that S? is constant in r and 6 and then updating S? to S?+1
after the iteration, provided Iail > .05.

There are two problems here:
1. the assumption introduces non-trivial error.

2. if ﬁi is large compared to r, then . will be small for
a sizable range of values of 6 so there will be no up-
dating of S?. ‘

The combination of these two problems produces significant
error even in good geometric configurations. Suppose there are two
radars G1 and GZ' For i=1,2, let R. be the horizontal projection
of the vector from own to Gi' Let é be the horizontal projection
of the vector from own to other. The error is especially signifi-
cant (as shown by test runs) when 3 is a convex linear combina-
tion of ﬁl and ﬁz, i.e., when the projection of other is in the
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smaller wedge determined by own and the two radars.

There is yet another problem which is very serious in an
environment where there are only two radars (so it may not be pos-
sible to choose a good geometric configuration).

When the distances from own to the radars are known or appro-
ximated and the heights of the aircraft are known, then knowledge
of each TOA restricts the position of other to a horizontal
ellipse whose major axis is in the vertical plane of the line seg-
ment joining own to the radar.

Consider the following sketches:

P| P|
s o G A\
2
P2
G2 Gy .
(b) (c) 2

In figures a)'and c), P1 and P2 represent the two possible
positions of other. In figure b) other has a TOA of 0 with respect
to Gl' In ¢) this TOA is small.

In case c) (or, for the matter a)) after successive iteration
the approximating solutions will become close to either P1 or PZ.
If the discrete nature of the iteration is ignored, the initializa-
tion will probably move to either P1 or P2 the two sinks of the
flow (or peaks of hills or bottoms of valleys or w-points of the
differential equation, all of which mean the same thing) with the
choice depending on whether the initialization is in the sphere of
influence (stable manifold) of P1 or PZ' In the range of small
TOA's Pl and P2 are not very far apart so a small initialization
error can result in the selection of the wrong sink.
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The problem is further complicated by the fact that the
iteration is discrete. An overeager iterative step can take a
point out of the right sphere of influence and into the wrong one.

The result of all this is that if other is too nearly in line
with one of the radars, the initialization error might actually be
doubled by the iteration.

As a final randomizer, successive iterations may take the
point close to the 'saddle' S, between the two sinks.

RSP
B

The vector is 0 at S and small near S, and the next iteration

-—

>

will stop near the saddle.

This problem makes it very important that the initialization
be good, expecially if the bearing of other is close to the bear-
ing of one of the radars. As mentioned earlier, this is precisely
the configuration in which the initialization is weakest.

In summary, there is going to be a bad region such that, if
other is in that region, the iteration may not improve the initial-
ization. Furthermore this bad region is where the initialization
is weakest.

ii) NUPAS

The essence of the method is described in Ib. At the present
time there is one known difficulty in the procedure and one pos-
sible difficulty.

Let for j = 1,2
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"APPENDIX E

BCAS FLIGHT TEST TAPE FORMAT

PURPOSE

1.1 The tape should contain the results of each test.

1.2 It should contain enough information to follow
the data reduction carried out during the flight.

1.3 It should contain the appropriate information to
do a three dimensional reconstruction of target
position if such information is available.

CONSTRAINTS

2.1 The data manipulation strictly for tape output
must be minimized so as to not create a large
overhead.

2.2 The data written to tape should be minimized so
as to not burden the DMA and not steal too large
a fraction of memory cycles.

2.3 The data must be heavily blocked on tape to

minimize program intervention.

GENERAL FORMAT

3.1
3.2
3.3

Each logical record is fixed at eighty characters.
The characters are coded in ASCII.

The tape is IBM compatible - 9 track at 800 bpi.
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3.4

3.5

3.6

The physical records consist of ten logical records.
blocked together. There are no extra block control
characters. Thus, a physical record is 800 characters
in length.

A logical record consists of two - 1 character fields

followed by thirteen - 6 character fields.

3.5.1 The first two fields are always numeric
and serve to identify the record tape.

3.5.2 The remaining fields are usually written
ifn octal format. When a field contains
alphabetic information, the previous re-
cord always specifies that alphabetic
information is coming. Thus, a different

format statement may bée used.

Record Types

3.6.1 Type 0-1 Header

3.6.2 Type 0-2 Header (alphabetic info)

3.6.3 Type 1-1 Main Beam Interrupts (unrecognized)
3.6.4 Type 2-1 Recognized and locked radars

3.6.5 Type 2-2 Recognized and locked radérs

(alphabetic info) '
3.6.6 Type 2-3 Recognized and locked radars

3.6.7 Type 3-1 Raw replies
3.6.8 Type 3-2 Raw replies (interrogation table)
3.6.9 Type 3-3 Raw replies (reply data)
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4.3

4.4

4.2.3

Fields 3 through 15 = up to 78 alphanumeric

characters entered as a title, left.adjusted

Type 1-1 Main Beam Interrupts

4.3.1
4.3.2

4.3.3

4.3.4

4.3.5

Fields 1 and 2 = 1 and 1

Present by default, deselectable, occur as
record is filled.

Fields 3 and 4 = time of interrupt; double
word internal clock; LSB = 0.145 /Usec,

6 + 6 octal digits from 16-bit machine.
Fields 5 through 14 taken in pairs; time of
interrupt as in Fields 3 and 4.

Field 15 = six - 2-bit fields indicating
interrogation mode, written as 4 octal digits

right adjusted.

4.3.5.1 The mode of the first interrupt
(fields 3 & 4) is indicated in the

least significant two bits.

4.3.5.2 Bit coding: 00 = nothing, 01 =
Mode A, 10 = Mode C, 11 = other mode.

Type 2-1 Recognized and Locked Radars

4.4.1
4.4.2
4.4.3

Fields 1 and 2 = 2 and 1 respectively
Always present, occurs oncé per scan, per radar.
Fields 3 and 4 = time of beam center, double
word internal clock, LSB = 0.145/pasec, 6 + 6

octal digits from 16 bit machine.
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4.5

4.4.4

4.4.5

4'4‘6

4.4.7

Field 5 = Scan #, 6 octal digits, from 16-bit
machine.
Field 6 = mode interlace pattern; 8 - 2-bit

fields; 6 octal digits.

4.4.5.1 two most significant bits for oldest
interrogation.
4.4.5.2 bit coding: 09 = nothing, 01 =

Mode A, 10 = Mode C, 11 = other mode.

Fields 7 through 14 = PRP's; LSB = 0.145/pls€c;

6 octal digits from 16-bit machine.

4.4.6.1 Field 7 = PRP1, remaining PRP's

in sequence.

Field 15 = number of hits in main beam; 5 octal

digits right adjusted.

Type 2-2 Recognized and Locked Radars

4.5.]
4.5.2
4.5.3

4.5.4

Fields 1 and 2 = 2 and 2

Always immediately following a type 2-1 record
Fialds 3 and 4 = time of indicated jnterrogation;
(only if locked) doubie word internal clock,

LS8 = 0.145/A(sec., 6 + 6 octal digits from
16-bit machine.

Field 5 = number of PRP which immediately follows
above interrogation (only if locked),z octal

digits right adjusted (first PRP is #1)
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4.5.5

4.5.6

4.5.7

4.5.8

4'509

4.5.10

4.5.11

4.5.12

Fields 6 and 7 = Scan period, double word;
LSB = 0.7145 &rs; 6 + 6 octal digits from
16-bit machine.

Field 8 = internal ID #(plus 10004 if locked)
4 octal digits right adjusted.

Field 9 = short main beam count (only if locked)
5 octal digits right adjusted.

Field 10 = External ID - alphabetic (only if
locked), up to 6 characters, left adjusted. -
Field 11 = number of found interrogations/scan
(only if locked), 5 octal digits, right adjusted.
Field 12 = number of missed interrogations/scan
(only if locked), 5 octal digits, right adjusted.
Field 13 = number of found interrogations in the
widened azimuth windew (only if locked) 5 octal
digits, right adjusted.

Field 14 and 15 = Error sum (only if locked)
double word, LSB = 0.145/(2**16)4sec, 6 + ¢

octal digits from a 16-bit machine.

This is the error sum at the time

of the indicated interrogation.

4.6 Type 2-3 Recognized and Locked Radars

4.6.1
4.6.2

Fields ! and 2 = 2 and 3 respectively
Immediately follows a type 2-2 record if the

radar is locked.



4.7

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

Type 3-1
4.7.1
4.7.2

4.7.3

4.7.4
4.7.5

Field 3 = quality number, 5 octal digits,
right adjusted.

Field 4 = own altitude, 2's complement value
in units of 100 feet, 6§ octal digits from
16-bit machine.

Field § = azimuth WRT north, in BAM's, 6 octal
digits from 16-bit machine.

45 deg = 020000, 90 deg = 040000,

135 deg = 060000, 180 deg = 100000,
225 deg = 120000, 270 deg = 140000,
315 deg = 160000.

Field 6 = heading of aircraft, in BAM's, 6

octal digits from 16-bit machine.

Field 7 = Own azimuth update flag in bit 0 + No.
of P{N)'s in latest scan.

Raw Replies

Field 1 and 2 = 3 and 1 respectively.

Normally absent, may be selected; occurs after
widened azimuth window of selected radar.

Field 3 = internal ID # of radar, 3 octal

digits right adjusted. |

Field 4 = scan #, § octal digits, right adjusted.
Field 5 = number of interrogation table entries,

5 octal digits, right adjusted.
Table entries are on type 3-2 records
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4.8

4.7.6

Type 3-2

4.8.1
4.8.2

4.8.3

4.8.4

4.8.5

4.8.6

Field 6 = number of replies, 5 octal digits,

right adjusted.
Replies occur on type 3-3 records.
Raw Replies (interrogation table)

Field 1 and 2 = 3 and 2 respectively.

As many of these records as is required follow
immediately after the type 3-1 record. Occur
only if type 3-1 occurs.

Fields 3 and 4 = interrogation time, double
word, internal clock, LSB = 0.14§/usec., 6 + 6
octal digits from 16-bit machine.

Field 5 = reply number pius one of last reply
for this interrogation, rép1y numbers start at

one.

Starting from the first interrogation,

if there are 2, 1 and 3 replies,

those numbers will be 3, 4 and 7.

Fields 6 through 14, taken in threes = time
of interrogation and reply number plus one of
last reply as in fields 3 through 5.

Field 15 = four 2-bit fields indicating in-
terrogation mode; written as 3 octal digits

right adjusted.



4.9

Type 3-3

4.9.1
4.9.2

4.9.3

4.9.4

4.9.5

4.8.6.1 The mode of the last interrogation
on this record (fields 3 through 5)
i{s indicated in the least significant

two bits.

4.8.6.2 Bit coding; 00
10 = Mode C, 11

nothing, 01= Mode A,

[}]

other mode.
Raw Replies (replies)

Fields 1 and 2 = 3 and 3
As many of these records as is required follow
immediately after the group of type 3-2 records,
occur oniy if type 3-1 occurs.

Field 3 = reply time, LSB = 0.145 /as, 6 octal
digits from 16-bit machine.

Field 4 = reply code plus 4 additional bits

6 oc%al dfgits from 16-bit machine.

starting from the most significant
bit: F1 net required (within own
reply time); miss - reply preceeding
this was missed.

SPL pulse

X pulse

A%, A2, A1, B4, B2, B1, C4, C2, C1,
%2¢, 02, D1.

Fields 5 through 14 in pairs = time and reply

code for additional repliess Written as fields

3 and 4, :
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4.10 Type 4-1 First Correlated Targets (1 scan, 1 radar)

4.10.1 Fields 1 and 2 = 4 and 1 respectively

4.,10.2 Normally present, may be deselected, occurs
after widened azimuth window for each radar,
if ahy replies meet the criteria for first
correlation.

4.10.3 Field 3 = scan #, 5 octal digits, right adjusted.

4.10.4 Field 4 = radar internal ID # times 400 (8) ~
plus interral target #, written as 5 octal
digits right adjusted.

4.10.5 Field 5 = combined Mode A code, written as
4 octal digits, right adjusted (A, B, C, D)

The Mode A code may be replaced by
either of two error codes:
177761(8) = Garbled

177760(8) = Insufficient data

These are written as 6 octal digits

from a 16-bit macﬂjne.

4.10.6 Field 6§ = number of hits ( = # of raw replies
into this correlated reply); 5 octal digits,
right adjusted. )

4.10.7 Field 7 = TOA {corracted for all circuit delays)
LSB = 0.01 /us, 5 octal digits right adjusted,.

tn
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4.11

4.10.8

4.10.9

4.10.10

Type 5-1

4.11.1
4.11.2

4.11.3

Field 8 = differential azimuth, in BAM's

positive angle if target center occurs after

own center, 6 octal digits from 16-bit machine.

45 dag
=45 deg

020000, 90 deg = 040000,
160000, -90 deg = 140000.

1}

Field 9 = altitude target, 2's complement
value in units of 100 feet, 6 octal digits

from 16-bit machine.

the altitude may be replaced by

any of four error codes:

177761(8) = Garbled

177760(8) = Insufficient data
- 100000(8) = No Mode C received

140000(8) = Illegal conversion

Fields 10-15 = information for another target,

written 1ike fields 4 through 9.
Second Correlated Tracks (multi-scan, 1 radar)

Fields 1 and 2 = 5 and 1 respectively
Normally present, may be deselected, occurs
after widened azimuth window for each radar,
if any targets meet the criteria for second
correlation.

Field 3 = scan #, 5 octal digits, right adjusted.
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Field 14 = Own altitude, 2's complement value

in units of 100 ft., 6 octal digits from 16-hit
machine.

NOTES ON READING TAPE

5.1 Conversion of the data on tape to the proper internal
form of the processing computer is machine dependent.
The conversion of positive values is straight forward

but that of signed values is somewhat more complex.

16-bit positive values are a problem on 16-bit machines
and 32 bit positive values are a problem on 32-bit

machines.
5.2 Conversicn of 32-bit time values (unsigned).

5.2.1 Nova (16-bit machine)
READ (12,100) IA, IB, IC, ID
100 FORMAT (I1, 0Is, I, 0I5)
IF (IA. NE.O) IB
IF (IC. NE.Q)} ID

n

[B. OR. 100000K
ID. OR. 100000K

5.2.2 CDC 6600 (60 bit machine)
READ (12,100} IA, IB
100 FORMAT (0€, 06)
IB = IA * 65536 + IB

5.3 Conversion of Date & Time

READ (12,100) IMNYH, IDAY, IYR, LHR, IMN, ISEC, ISCID
160 FORMAT (r2, rz, rz, 2x, rz2, 12, 3x, 1z, 11
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5.4

5.5

5.6

5.7

Unsigned § or fewer octal digit values

5.4.1 Nova {(16-bit machine)
READ (12,100) IB
100 FORMAT (1x, 0I5)

5.4.2 cOC 6600 (60-bit machine)
READ (12,100) IB
100 FORMAT (1X, 05)
Angles in BAM's '

5.5.1 Convert the value as if it were a signed
integer.

5.5.2 Convert to floating point

5.5.3 Multiply by 90/16384 to convert to degrees or

/32768 to convert to radars.
Conversion of unsigned 16-bit values

5.6.1 Nova (16-bit macﬁine)
READ (12,100) IA, IB
100 FORMAT (I1, OI5)
IF (IA, NE, 0) IB = IB. OR. 100000K

5.6.2 COC 6600 (60-bit machine)
READ 12,100 IB
100 FORMAT (06)

Conversion of dp to 8 packed interrogation modes.
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5.8

5.9

5.7.1 Read value in as 16-bit unsigned value

5.7.2 Nova (16-bit machine)
MD1 = IB. AND.3K
MD2 = ISHFT (IB, -2) . AND.3K
MD8 = ISHFI (IB, -14), AND.3K
5.7.3 COC 6600 (60-bit machine)
~ MD1 = IB. AND.3B
MD2 = SHIFT (IB, -2). AND.3B
MD8 = SHIFT (IB, -14). AND. 3B

Conversion of signéd 16-bit value
5.8.1 Nova (16-bit machine)
Read it exactly like unsigned 16-bit value.
5.8.2 coc 6600.(60-bit’machine, 1's complement)
READ (12,100} IA, IB
100 FORMAT (01,05)
IF (IA. NE.O) IB = -(1+(.NOT.IB.AND.
777778))
Conversion of signed 32-bit value (ERROR SUM)
5.9.1 Nova (16-bit machine)
Read it exactly 1ike unsigned 32-bit value
(time value)
5.9.2 COC 6600 (60-bit machine, 1's complement)
READ (12,100) IA, IB, IC
100 FORMAT (01, 05, G6)
IB= IB * 65536 + IC
IF (IA.NE.O) IB= -(1+ (.NOT. IB. AND.
177777777778))
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5.10 Two packed 7-bit bytes in one field
5.10.1 Nova (16-bit machine)
READ (12,100) IA
100 FORMAT (1X, OI5)
IL
IH

IA. AND. 177K
ISHFT (I4 -8). AND. 177K

]

5.10.2 COC 6600 (60-hit machine)
READ (12,100) IA
100 FORMAT (1X, 05)
IL = IA. AND. 177B
IH = SHIFT (IA, -8). AND. 1778B

E-18
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9S5-4

DEGREES

r;IIZPﬂH TESTING: NOV. 8. 1976
OWN AZ COMPARISON AUN 11 28 OEG. 0ut-aouND

BCAS (o]
ARTS n

288. 00

284.00
8

™ n NuEm . u b Y
.e.ll’ &-‘.‘ * - ..'; P n. -t . 'IJ f.b ° " %ﬁ

FFo o N M

280. 00
0
0
0
0
&
e
&
od
§,
0
0.0
g

....,....,....,....,....,....,....,....,....,....,....,,...,....,....,....,....,....,....1
L g0 B 40 4 gp S5 g 65 70 " g0 9 gp 8 4g9 105 ;o
SCAN NUMBER

FIGURE 5.5-8



LS-4

315.00

]

3807.00

DEGREES
299.00

JTIDS TESTING: JAN. 6. 1877

ONN AZ COMPARISON 2 - e, o
MIZPAH BCN 1270

BCAS 0
EAIR ]

A A Aaas snass AARAS RAARSE
60 s <0 5 g0 O g0 % 100
SCAN NUMBER

FIGURE 5.5-9
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0L-4d

SEA ISLE TESTING:NOV.17,1976
TOA PATTERN B CLINB-DIVE MODE 133

N48,BCN 4215 OWN

N49,BCN 4216 OTHER

BCAS O OWN INTERROGATOR

50.00
)

o
e cnP

Lhd RARAS RAASN RARAS | RARAE RAARS RAaL LA MAAAS MMM RARAL RAARS A8 \Ad RAAAS RAALS RARRS RAARS | MMM AARAS RASAS RARAS RARAS RAARS ]

230 235 240 245 250 255 260 265 270 275 280 295 290 295 300 395 350 3'5 320 325 330 335 340 345 350
SCAN NUMBER

FIGURE 5.16-23
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vi-4

7Y

§0.00

40.00

7

00

SEA ISLE TESTING:NOV.17,1976
]'UA PATTERN B CLIMB-DIVE MODE 131

N48,BCN 4215 OWN

N4Q,BCN 4216 OTHER

BCAS O OWN INTERROGATOR

(o]

s?

o i M L B e Raas B M L L e Raatd Aaad Lt 1

230 238 240 245 250 255 260 265 270 275 280 285 290 285 390 305 3¢ 315 3¢ 325 339 335 340 345 350
SCAN NUMBER

FIGURE 5.16-27
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06-4

_SEA ISLE TESTING:NOV.I17,10876
DAZ COMPARISON pirchs bl 1
N49,BCN 4216 OTHER

o BCAS (o]
n ARTS *

OOO

=~ O 00gqg o) o
-— ° o
::u';'- NofR % 8’5;20

11"'-'-'ll-""""---'"-VIII-I'-'v‘lcvvv'---'l

40 s 50 55 60 L 70 15 80 L 20
SCAN NUMBER

FIGURE 5.16-43
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TOA COMPARISON

[ o
aﬂﬂ'a
By o .

SEA ISLE TESTING:NOV.17,1876
PATTERN B DIVE-CLIMB MODE 131
N48,BCN 4215 OWN

N4B8,BCN 4216 OTHER

8CAS (s

ARTS %

| & 0.00

12

— T
U 70 75 80 a5
SCAN NUMBER

3. 888 Sswasmgs
5 100 108 10

FIGURE 5.16-46
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Altitude in Feet

11,000

10,500

10,000

9,500

9,000 [ __

LEGEND: OWN

Time in Seconds

FIGURE 5.16-52. RUN 1 PATTERN A D

BCAS e
ARTS (O
AA
A
A
AN
Q0000000000
-000 DDDD
000000 0]0.0.0.00 0]
00000 OOOOO AAAOOQO 00000
OO0 aa
| AA
AA
AA AA
| I A AAA
A
o]0 AA
AA
=
TAU2 | TAU1 (Conti) 5 1 l |
0 20 40 60 80 100 120 140 160

IVE MODE I 17

OTHER

A
A
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ALTITUDE IN FEET

11,000

10,500

10,000

9,500

9,000

000
000 0000

000
0000

- 00000000 00 AAA

000 0 AAAAA"

OCaaa 00O 2444
AA‘A OOo AAAAADDDOO

AA AA
AA s
AA A
AAAA AA

— A AL
AA AR

AAAA
AAA
AA

I I l | | |

000 DAA ALA

o]e
000000000

00000

00000

20 40 60 80 100 120 140 160

Time in Seconds

FIGURE 5.16-53. RUN 11 PATTERN B DIVE-CLIMB

MODE I33
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Altitude in Feet

Legend:

OWN OTHER
BCAS O A
ARTS () A

AA

11,000 | £
AAA

10,500

AA
AAAA
AA

A
AAA

Al

AA
AAA
AA

AAALAA
OOAAAOOOOO

10,000

9,500

9,000

00000 OOOOOOOOO (0]0) OOOAAAA

D)
OOOOOOOOOOO

Time in Seconds

FIGURE 5.16~54. RUN

0 AAA
00 0 00000000 AA 000
AA AAA
AAA
AAA A
AAA
— AA
| 00 —pptd— 21 —p»f ¢ 32 30 Joo
C -Al
31,0
TAU 2 TAU 1
] ] | 1 ] | | ]
0 20 40 60 80 100 120 140 160

17 PATTERN C DIVE MODE I17
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TABLE 5.3-1

TBA/DAL ERRBR ANALYSIS PROGRAM

BCAS-TOA/DAZ SUPPORTING DATA

DATE 24 JAN 1977 PA 0
TARGET CBDE: 0777 RuN NB3LCAS 045  11/9/76  ASR-s A ! ot 0003
SCAN BCAS EAIR THA BCAS EAIR DAL o
TIME Nite TEA T8A DIFF DAz DAZ OIFF
11:22:4940 33 820050 794599 W51 64163 =6¢380 217
11:22:52.9 34 7R«590 78.075 51l °6e 43R eg6e290 et 48
11:22:56+8 35 774090 764634 456 6¢633 w6099 .1734
11023 7 36 754550 75146 “uCh 5. 784 «5 884 “«100 -
11123 46 37 744040 73.706 «334 =4¢592 *5e631 14039
11323: 86 38 72+50C 724136 «364 =Se449 5,371 T Tee0787 7T
11123116+ 4 49 694400 682995 «405 «44999 4868 ee131
113837203 o1 674860 67376 484 =5e9435 ehe73C esci19
1182352402 42 650280 654779 «501 40949 eheb19 ¢330
111231282 43 644650 644175 475 «42757 “he5i2 s 245 -
11$23:32.1 b 63070 62+666 k04 ~4e578 chaby9 es429
1142313949 46 604030 594680 +35C *3:367 “4e358 T TTTWHYT O T
11:23:4%3.8 47 58,450 584136 314 ehe708 *44306 os b2
T TIYa3TETE ¥ 56+940 55+573 — <367 =%+735 5339 ve396

113233517 49 554490 554052 438 34774 e4e372 +598
1112315546 T80 BYOOD T 539865 438 «4.532 T S%,391 TURWIRY T T T -
11323159.8 51 524540 52.151 0389 =heb31 w4430 0201
117245 Tob T4 T TB1.100 504723 377 44515 T SWIW5E e 9057
118245 7.3 53 494600 494328 272 e4e213 “4e475 0262

I RRE-LXR 8 KX 5% SH. 140 §7.825 315 «Fe 83T CLTLY 3! CR LY
1181243152 55 464660 464329 »331 ~4e872 akhot56 wellb
138287191 SET T UTTASG23IDT T T T4k.BS T376 CTTUTTTAB. 058 whl47B e 526 -
11:264:23+0 57 434800 43,386 X3 e b66 whei )2 »es 054

T TR{Y2E32649 T BE” 6PLR30 41,9877 CTRGET T T <%+158 ko377 215 E—
1112423049 59 414040 404593 LY «3.983 whe302 +319
T1724:38+7 [3) 38.240 38011 Y44 CLTY-LT %135 w+110

. 1132434Re6 62 36900 364619 281 o 4202 whs 034 w1168
1112424646 63 35,520 35.167 «353 44252 3,959 «+293
11:243:5045 64 34.220 . 33.829 _+391 o =34774 *3.890 *116
11:24:5404 65 37880 32.421 459 «3.439 «3.816 377
11:243%5803 66 314530 31.102 2428 =54048 *3+761 vie287
11125: 2+2 67 30170 29,766 T <4125 *3¢710 - 515
1132531490 70 260220 254891 «329 40279 3,654 =625
11:25:17+8 71 244970 24.634 T 336 “3046) «3.696 235
_11325:21.9 72 23.680 234277 #403 *3+686 ®3773 087
11:125:25+8 73 224430 21.975 B +455 =«3+950 «3.856 we Q9%
113251297 T4 21210 204799 41l ~4e202 #3921 w0281
11725:33+6 75 200020 19.660 V360 <%+136 v3¢971 vv165
1112513746 76 18950 184559 391 ~44504 *4+001 «1503
111251515 77 17+910 17.570 L1 *4 598 «5.031 567
1182554544 78 16930 164601 ~ .329 5707 “4e071 #10636
11125149.% 79T T 184990 15.612 T Te378 T T eh.356 %079 «e277
11:25:53.3 80 144990 144609 381 o44356 obs045 we311
11:25:57e2 81 14,010 13.629 +381 34724 <&+ 002 +278
111263 1.2 82 . 13.090 124637 1453 40175 *34986 ve 189
11326% 501 83 12200 11.792 <408 =3¢80% w3e943 o {42




E1GeR . _=S3MYNBS 46 WNS %66°52 - _swNS 88 sN 860°¢ *S Vel 562¢ NY3W YOL
161071 1C3YADS 40 KNS 2890+ =UNS 88  aN wGE* te@eS Zv@ £G0e~ HE AL
£62°* 28219~ GLG*9- L91° g22¢2 06€¢2 0zt geteiaciit
L 600+ 88299~ 6L2%9e ____ gl1°* £82%2- 0042 611 gee2ta6itt
28E" 48249= 006°G= GET* Thet2 08he2 811 9*E2:2641T
_820¢ . — &91°* 1942 OE%9e2 _ 911 8'51:i26:71
691 hale 9452 069°2 sit gelT826811
6ETe 143 60942 08zs°2 "1t 6L 328311
ThOee 20n*9- €8T 4892 0L8¢2 (33 Oy 26:11
4314 va 4410 vei val @GN 3WlL
Zva ylv3 _.val, LIS ER svod . NY3S .
neuSY  92/6/11 g0 SVIT 6 NAY £2.0 13089 13%ivi

R000 30vd L6V Nyl %2 31vd WYHOO¥d SISATIYNY ¥GH¥3 ZVAQ/vEL
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801-4d

T8A/DAZ ERROBR ANALYSIS :ROGRAH

DATE 24 JAN 1977 PAGE 0002

TARGET CROE:! 0777 6 | CAS O45  114/8/76  ASRey

SCAN BCAS EAIR T68A BCAS EAIR DAZ
TIME NG« TOA T84 DIFF DAZ DAZ DIFF
LT X ] mwea L L] sfwe oeew oPewy cow® Teaw
116535946 15 24680 24510 0170 50339 54227 weil2
11:56¢ 35 16 24850 24701 0 189 =54037 «5,302 1265
111563 7o4 17 34020 24879 o141 52125 54336 v211
111561114 18 34250 3,089 161 »He268 v54394 0126
113563153 19 3.530 34284 246 ~5.674 «5e436 -0238
11156323+ 21 4070 3.852 218 «54400 *5.56% 0164
113568271 22 44400 44232 168 »5e922 «5e622 «¢300
1176562310 23 4e870 4,623 Y-L2 «6e059 *5+698 o361
111563349 26 4320 5¢118 202 54874 =5e824 »e054%
117561389 2% T+980 5,713 Y] - “5+916 56951 *025
11:56:42+8 26 6¢670 6ebl6 «254 =54779 «6+078 299
1135614647 27 T 74450 7+218 «23C wbe 152 ©6ec07 2059
. 1115615046 28 %4380 84087 «293 =60¢125 6312 v187
111568945 29 T k&0 T.116 <32% ~6+587 “5v392 =v18Y
1115635845 30 1Ce610 104339 291 »6e910 60497 o1413
117578 2¢& 3T 125630 11+865 +369 “6e782 vEe608" ~+15%
111572 643 32 13610 13.412 498 w6718 60721 +003
T1T8710.3 33 15220 14%.8086 ' B1% -Ee817 *5e839 018
1135721402 34 174050 164669 381 «7¢020 60922 »e098
f1:57122+ 1 35 21290 20.836 45w =7¢075 =7+ 140 vOBS
11:57326+0 37 22.580 23.066 514 »74339 70261 «¢(78
11157i29+9 38 25920 25.521 <399 ~7¢322 74377 s055
_11357:33.8 39 284440 274954 V486 74480 74415 0235
11:57:37+8 40 30,930 30,459 XAl *74630 «T. %66 TRt
1115734546 42 364190 35.691 499 «7e482 v7,681 0199

11167:49:5 33 384800 “Be113
113523535 44 414490 41,038 452 84152 *723% ved2l
11867:57+4 45 444290 43,733 «557 ~84¢C69 «7.¢796 we273
112588 1.3 46 474060 464549 o511 «B.251 w7844 =e 407
11:58: 9.2 48 524710 524167 543 «7+910 74877 «¢033
1325831304 49 554540 554008 2532 =-84229 74932 =297
11:58:11740 50 584460 574955 . 505 w8+372 «7937 ee 435
113582209 51 614380 604911 469 84168 «7.880 ve288
11358326409 52 644280 634797 +483 wBehk3 %7901 0582
113583288 53 67+200 664655 2545 «7.828 *74966 v138
11:58:3247 54 70090 694611 o479 e8+251 74998 w253
115833646 55 724960 72.509 o451 «Bs179 «8¢040 -e139
11:58:4046 56 75+830 75.382 <448 74982 =8¢107 125
11:58:44¢5 57 78730 78e144 +586 w8234 eBelbd «1070
11i6B:48e4 58 814630 81,055 575 *Be51% “B+218 vv296
11:58:52.3 59 844380 844042 L)) «8¢701 *8+312 =+389
11:58:56+3 60 87390 864973 PLIYY *8+278 *8ea1i8 140
1186598 4.1 62 934280 92.728 +552 »84833 *84+785 e 048
111897 Be0 63 964220 95.705 515 wJe240 «94017 wsced

DAZ MEAN: 092 DAZ SeDe: w223 Ns~ 43 SyMe UM OF SGUARESS® 262
TEA MEAN! 393 . _T8A SeDei. 137 Ns 43 SUM= ., - .. - 16-912 suﬂ 8F SQUARESS® ..». 74445
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T11-4

TBA/DAZ ERROR ANALVSIS PRO"RAH DATE 24 UAN 1977 PAGE 0012

TARGET COOE} 0777 RUN 8 LCAS 045 11/9/76  ASR=4
SCAN™ BCAS EAIR TOA BCAS EAIR DAZ
_TIME  NB. TOA T8A DIFF DAZ DAZ DIFF
128163564+6 3 40930 40716 214 =9¢794 «104040 2246
123173 o3 4 54120 44977 v 1n3 =10+052 <10+147 «089
125372 4eb 5 50340 50184 1156 =10+228 =10+139 »+089
128172 843 6 5,530 Se361 «169 T «10+541 -i¢.089 s 452
121173162 8 54890 54749 141 =100168 ~ =9.903 =e265
1211731201 E] £.160 5.975 +185 -8+893 »9.806 0913
128371240} 10 60430 6217 213 =9:959 *9.70C -+259
1211713149 12 7+030 6e771 Y30 «Je¢256 *9. 462 +206
12317:35.8 13 7420 74183 v237 =9.267 94439 172
12117339.8 14 7.970 T~ 71.727 T .23 «9e 443 *9.488 ’ 0045
1231724746 ,_;6 _ 9.220 9.012 +208 -9+822 =94635 -0187
12817_5W 164760 106466 T 7T 4299 T T T 7e54827 1 w94617 0 ee2i0 N N
_ 121175944 19 114680 11.356 324 *9s 404 *9.645 «24])
127187 73 21 T3.870 13.57% v 295 =I10.003 <9580 v 323
1281831541 23 160740 164317 423 94597 9,782 +185
12118:23, ] . 7,282 - «10e047 T eU.BBIT T Tedl®® T T T T T T T T
12818:3008 27 24.070 23,631 439 ~100129 *9.936 ee193
TI2T{Bi3%«8 28 2601907 25803 T 387 T T T U A9yBII T ~10.012 ¥i79 - T T vt T
12:118:3847 29 284410 28+052 +358 «10¢36C *10+019 s34l
{27188 30 30750 —30+367 383 =10+098 +I0.058 ety
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TBA/0AZ ERRBR ANALvsxs pnecam

DATE 24 JAN 1977

PAGE 0005
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SCAN EAIR T8A BCAS EAIR DAZ
. IK"E._E_":_“ . ,TM T0A DIFF DAZ DAZ DIFF
$149833.8 21 93310 bak)?
12149:37:7 22 91+620 91.168 <458 %625 %798 ee173
12139%‘1'6 ....e3  89.900 89,454 2446 54059 Selbb «¢G85
12%49185:6 28 88.210 87:760 + 450 54570 5,433 (77
214984945 85 _B6e430 _ _ 86+118 312 5839 54708 +131
12849153+ % 26 84.710 84 %00 «310 54394 TTEBGT97 T Teduy
121493573 27 824970 82644 «326 5806 Se816 «e010
127807 13 28 81.240 804807 %33 o317 5702 =+ 385
123150 5.2 29 794450 784366 0484 50334 5e604 -e270
121508 9.1 30 TT620 77.163 o457 5.186 " 5.846 T 1-1s)
121808131 31 750830 754381 449 5098 5:531 .e433
1215011740 32 744040 73,686 .35 T Soabt TB5.528  ee084 -7
V12350.2009 33 724300 714979 321 S¢070 5.503 «e433
C+550 70+175 +379 LY Beh6e =+315
12250125 8 35 68+870 680462 408 42993 . 54408 we 415
121501327 3% 67.150 664706 FUL 2 Ty 1 & A T35 T <e008
_.1_2!5033607 37 65500 644963 «537 5+125 Se202 00077
12‘56336" 38 63.800 63348 ' 54823 -1 ee208
3215034445 39 62+080 614772 »308 44905 40994 -+ 089
B0 0 60+098 +39¢2 Be891 G935 cechd
12‘50:520~ 41 584810 584430 +380 ba845 40922 ve077
1.0 0 - 56.77% + 356 Te38% %922 >+938
124518 3 43 554450 54,953 497 44510 44908 398
121513 #e2 % 53770 ~ Be065
$12151¢ 8.1 45 524030 51+606 h2h 5219 50056 0163
12181121 L1 50.280 %9+910 370 Te77% 5159 ~eJBS
12:581116.0 47 48540 48422} 319 54186 4275 2089
1215818199 %8 46+890 464509 «381 54663 Se430 0253
12391:23+9 49 45.210 “he774 436 54416 54553 0137
121512748 S0 434540 43.087 +453 Se416 54679 we263
_mu;xu__ﬂﬂﬂ__ﬂﬂl—"‘g;» Se416 54795 »¢373
12151:3%.6 52 404310 39.902 o4 GeoB4 5eB54 *+570
1215133946 53 384690 384330 «360 $+609 5902 293
12151143.5 5S4 37.400 364747 +383 54751 54914 e 163
1218114744 55 354450 35,079 o #37% 54609 5,926 ve317 N
1215115144 86 334830 33,399 0431 50620 6,929 *+309
1215135503 57 32.230 31774 o 456 Se762 50939 «s177
12153159.2 58 304640 30.188 » 452 5.773 T 5e040 e 167
1528 3.2 59 294400 284652 W48 5¢916 54937 0o 021
121523 7} 60 274550 27+221 0329 5.576 5.88%5 we309
121521110 61 26+060 25+79% «266 $+806 5+832 se 026
12152:18.0 62 244680 24+326 +35% 5.806 5+803 +003
2182:18.9 63 234290 22.886 1404 54669 5.777 ve108
j2182:22» . 21950 . 5.883 Se767 °116
1215232647 65 204570 20+136 o434 6+0790 5739 ¢33}
121523307 [.1) 19+250 18.828 Y- 8691 Be72% o033




9TT-4d

TOA/DAZ ERRBR ANALYSIS PROBGRAM DATE 24 JAN 1977 PAG 0
JARGETY CBOE: 0777 RUN 11 LCAS 045 1179776 ASRey gy ! E 0006
SCAN BCAS EAIR TOA BCAS EAIR DAZ
TIME N8 THA TBA DIFF DAZ DAZ DIFF
1215231346 67 17950 17+567 383 Se510 50728 9248
12:52:38¢5 68 160650 16371 273 54301 54709 0 k08
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1215215003 71 134400 13.029 +371 5768 Se711 2057
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12153¢ 9.9 76 3+460 9,148 v 312 5471 5.758 w287
12:53:13.9 77 8+840 8¢544 296 Se466 5847 we35]
127531178 78 8+290 8,000 «230 De674 5865 eel3]
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128542 140 89 44400 44202 +198 S4856 5892 »e 036
127587 &9 30 BRTY-LY] Ge00% 2236 B5e691 B.8566 we 175
12:5481208 92 34860 34657 +203 5.806 5¢848 *s042
T2T84I16+7 93 3700 3e522 « 378 52999 5e876 vied
1285432496 95 34480 3.319 o161 5883 5¢947 «e 064
12:54;28+5 96 34430 3,215 215 $¢977 5974 +003
121543325 97 34260 34093 0167 54691 54991 2+300
1215433644 98 3.210 3.011 «199 5+867 64020 v 153
12:54340.3 99 3.090 24906 o184 54680 64028 ee348
123541443 160 3,040 24835 . 6+070 6e047 021
__..12154348,2 10} 2¢840 2763 «077 5883 6068 »e135
12184352, 1 102 2+870 20693 177 5938 60087 we 149
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12:55; 3.9 105 20610 24456 +15% 64059 6+086 =0 027
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DAZ MEAN? w0152 DAZ SeDe? «193 Ne 83 SUMe ej2+612 SUM BF SQUARESS® 4987
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LTIT-4

LN DATE e N§ DATE # PAGE otoz
TARGET CBDES 0777 RUN 2sLCAS 045,11/9/76,ASR% B
SCAN BCAS ARTS AL BCAS ARTS T DAT
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BA/DA LY PR AM DATE o NO DATE + PAGE 0004
TARGET CBDE: 0777 RUN 3,LCAS 045,11/9/76,ASR%
R 1 of L1 BCA ARTS BCAS ARTS 0A2
TIME NB. TOA TBA DIFF DAZ DAZ DIFF
Pmpe ooee "wwe etow euew Twomw -—Ee® oo
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They are independent for the two aircraft. Culbertson

has estabished, by comparing ARTS data with phototheodolite
data for a pair of aircraft being tracked by both, that the
azimuth errors for two aircraft also are independent. If all
the different errors are assumed independent, then the above

formula for cé reduces to
s

4 2
(e, (e
9 Hl H1 P] H2 H2

’

Since the measurement errors are statistically the same

for both aircraft, this further reduces to
2 2

2. {(a RS) +(a RS)]AOZ
Rs 9 R1 3 R2 R
2 2
) -G 1
5 %, 39, ¢
2 2
3 R_\ 3 R
() - () L
3 Hy 3 H2 H

A similar expression holds for cg. The values for OR>s o¢

and o
d y are



.018 n.mi.

Q
I

R
c¢ = ,25 degrees
Oy = 30 ft

Approximate expressions for oﬁs and oé are shown in Figures
G-1 and G-2.

In plotting the values Rs and 6 obtained from the
ARTS measurements, vertical lines were drawn about the com-
puted values to show (approximately) the 90% confidence
intervals for these values. These lines extend 1.65 g
above and below the computed value. Each such line is to
be interpreted as the range within which the actual value
of Rs or 6 lies with a probability of 90%, given that the
ARTS observations are the noise-corrupted value that were
actually obtained.

It may be noted that the size of the confidence inter-
vals is a function of the aircraft configurations. For
instance, the confidence interval for 6 is small when the
aircraft are far apart and large when they are close to-
gether. This is readily explained. There is some uncer-
tainty about the precise location of each aircraft. When
the aircraft are far apart, relatively small displacements
of either do not much change the direction toward the other.
When the aircraft are close together, small displacements
perpendicular to the line separating them can cause signi-

ficant changes in bearing angle.



The following should be observed in interpreting the
error bars: a) The + 1.65 o range corresponds to the 950%
confidence interval for normally distributed error. The
assumption of normality is not really justified here.
Therefore, the error bars éerve more as a qualitative in-
dicator of accuracy than as precise indications of the size
of the confidence interval. b) The errors considered are the
errors in "good'" ARTS measurements, i.e., the errors in
precisely defining the location of a clear target in the
absence of garble effects, '"split target" errors, and other
effects which cause either a wrong or an incomplete group
of transponder replies to be identified as an ARTS target
report. Such effects in general will cause wild points in
the ARTS reply sequence. The probability that such wild
points will occur and the magnitude of the resulting error
have not been taken into account at all in constructing the

error bars.



TARGET

TARGET
0 ASR 0 ASR
Ry>Ry Rp<Ry
cosw=R2-Rl cosszl-RZ
RS RS
v o2 o cosPy (/7o) +sin? 2, (*M) o502 BA g 2y
cRs = cos P ZGR) +sin w{(RMcAlz) + \g/ sin” & (VZ 9r )
m

where cosy = \RZ-RII/RS, 0° < ¢ < 90°

RM = max (RZ,RI), Rm = min (Rz,Rl)
_ i 2 _ .. . . :
Op12 = 2(1 pAlz) Op = differential azimuth variance

Op = azimuth variance

oR slant range variance

APPROXIMATION FORMULA FOR THE VARIANCE OF RANGE
SEPARATION (R.); [AA[<18°

FIGURE G-1: EXPRESSION FOR 02

[Source K. Culbertson] Rs
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MAX (R,,R ) > NMI
AND |R,-Ri| < 5 NMI
2 2 2 .2 2
GRS = cos“y (V2 op)” + sin"y (Ryo,;,)
2 2 .2 2
Og =0, * {cos ¥ (Ryo A12) + sin“y (V2 op)

where cosy = |R,-R;|/R_, [A,-A ]| <18°

RM = max (Rz, 1)

oi = azimuth variance
2 _ 2

op7 20 - ppp) 9y

Px12 = correlation coefficient of A A, errors (=0)

22 1
= slant range variance

= 0o - . =
For y = 0° (Radial Case: AZ Al’ RZ#Rl)
(VZ o)’

2
. Puoa1z)
M ALz

R

14

For v = 90° (Azimuth Case: R,=R

2 |A,-A;]218°)

1’

(RM AIZ]

. (VZog) 2
~ER)

R
S

APPROXIMATION FORMULAS FOR VARIANCE OF RANGE SEPARATION (R.)
AND BEARING ANGLE (8) WHEN MAX (R,,R;) > 20 NMI AND \RZ-RIT
< 5 NMI

FIGURE G-2. oé AND o2

[Source K. Culbertson]
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