FAA-78-9 REPORT NO. FAA-RD-78-53

EXPERIMENTAL BCAS PERFORMANCE RESULTS

ġ,

Janis Vilcans et al.

U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Cambridge MA 02142

JULY 1978 INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

		No. 3	Personal's Catalon N		
I. Report No.	2. Government Access	Jon 140. J.	Recipient's Calalog IV	J.	
FAA-RD-78-53					
4. Title and Subtitle		5.	Report Date	i	
		July 1978			
EXPERIMENTAL BCAS PERF	ORMANCE RESU	LTS 6.	6. Performing Organization Code		
		8.	Performing Organizatio	in Report No.	
7. Author's' Janis Vilcans, Edw Herbert Glynn, Ben Frederick Woodfall Robert	ard Quish, Juri jamin S. Goldst Wisleder	s G. Raudseps, ein,	DOT-TSC-FA	A-78-9	
A Dela Contraction and Contrac		10	West Hard No. (TDAIL		
Y. Performing Urganization Name and Addre	ss anontotion	10		7	
Dis Department of Iran	sportation	· · · · ·	FA839/R811	<u> </u>	
Research and Special P	rograms Admi	nistration "	Contract or Grant No		
Transportation Systems	Center				
Cambridge MA 02142		13	Type of Report and P	eriad Covered	
12. Sponsoring Agency Name and Address			Interim	Report	
U.S. Department of Tra	nsportation		4/1975 -	5/1978	
Federal Aviation Admin	istration		.,	-,	
Systems Research and D	evelopment S	ervice 14	Spantacing Approx C	ode	
Washington DC 20500	everopment 5	ervice	oponsoring Agency c		
Hashington DC 20590					
The results of the System concept feasibil description of the conc system concept is based detecting and resolving under Contract No. DOT- automatic radar selecti target range and bearin enhancements are curren of the BCAS were evalua active (interrogate by passive). Also, report study effort conducted single-site feasibility feasible concept and th signal would be more ac alternatives. For each system performance fail reliability may therefor	(Litchford) ity evaluati ept, analysi on the rang a threat. TSC-1103, Ta on and lock- g in real ti tly being im ted. These on-board tra ed are resul on the azimu . It is con at the passi curate and 1 operating m s or is degr	Beacon-based on are reported s and flight f e and bearing The experiment sk 1-8, did no on mode and th me which the of plemented. All are: the pass nsmitter), and ts of the comp th signal required cluded that the ve mode with a ess troubleson ode there are aded to some of he implementat	Collision A d. Include est results measurement al hardware t implement capabilit concept requ t three gen t three gen t the combin orehensive i trements an BCAS is a an azimuth r than othe geometries legree. Sys tion of vari	voidance d are a . The s for , developed the y to compute ires. These eric modes -in), the ed (active- n-house d on technically eference r BCAS in which tem ous	
17. Key Words Beacon-based Coll	ision Avoidance	218. Distribution Statemen	9		
Deference Multi-Cite CAS W/W	without Az	DOCUMENT IS AVA	LABLE TO THE U.S.	PUBLIC	
Reference, Passive/Active/S	emi-Active CAS	THROUGH THE NA	TIONAL TECHNICAL		
		VIRGINIA 22161	,		
19. Security Classif (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclass	ified	120		
			420		
				L	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

PREFACE

The objective of the work reported in this interim report is to summarize measured and derived performance values of the experimental Beacon Collision Avoidance System (BCAS) hardware and software design. This BCAS concept is one of the several design options available, and it was conceived by George Litchford, who was awarded a sole source contract (Contract Number DOT-TSC-1103) to implement an experimental system function representative of the BCAS airborne and ground equipment. This effort comprises the initial step of the FAA/SRDS-250 Separation Assurance Branch toward development of the BCAS concept as a part of a national collision avoidance system. It is envisioned that the selection will be made by the FAA from one of the various BCAS design options and that the selected design will be compatible with the Air Traffic Control Radar Beacon System (ATCRBS) improvement program and the Discrete Address Beacon System (DABS) development.

The analysis and flight test evaluation program, under the sponsorship of FAA/SRDS-250, was carried out by TSC and NAFEC. The experimental BCAS equipment, developed and debugged by Litchford Electronics, Inc., was turned over to the Government on October 14, 1976. Extensive flight testing followed at the NAFEC test area acquiring technical performance data under a variety of parametric conditions. The test flights included flight encounters between two BCAS-equipped FAA aircraft, and also flights against a fixed target and against targets of opportunity. Flight tests were completed on December 17, 1976.

This report includes evaluation data for all hardware delivered in compliance with the contract DOT-TSC-1103, tasks 1 to 8 inclusive. After March 1977, the responsibility for the hardware development contract was transferred to NAFEC and, in addition, the contract was also augmented by adding tasks 9, 10 and 11 to implement the better main beam lock and the automatic radar selection and radar lock-on capability. The evaluation test

iii

results of the added three tasks are not included in this report.

A TSC in-house design analysis effort was to study various BCAS design alternatives for the azimuth reference signal requirement and to perform studies on the BCAS critical characteristics. Performance trade-offs among various design combinations are reported. Critical design considerations, for example, synchronous garble, possible configuration for generating false targets, and an assessment of the potential interference with BCAS for the . Joint Tactical Information Distribution System (JTIDS) are also covered in this report. In addition, under separate TSC memoranda the following results of analysis and tests are reported. Report number FAA-ARD-78-2, "Airborne Antenna Diversity Study" provides conclusions arrived at in analyzing airborne antenna diversity requirement for general aviation aircraft; Report number FAA-RD-78-34, "BACS Alternative Concepts for Determining Target Positions" provides in-depth design trade-offs for range and bearing calculations in the static case.

Analysis for the dynamic case and the covariance error analysis are in progress now and to be reported in subsequent reports.

The following individuals and agencies are acknowledged for their support to the BCAS program. Particular recognition goes to David R. Israel, former FAA Associate Administrator for Engineering and Development, for his vision and support of this program during initial design and development phases. Continuous support was provided by Martin T. Pozesky, ARD-200, Thomas M. Johnston, AEM-200, Richard F. Bock, ARD-251, John L Brennan, ARD-251, Owen E. McIntire, ARD-251, Richard L. Bowers, ARD-251, and Peter V. Hwoschinsky, AEM-20. Initially, the feasibility of the BCAS concept was assessed by an FAA created ad hoc committee. To the members of this committee a special appreciation goes to James J. Bagnall, Institute for Defense Analyses, Paul R. Drouilhet, Lincoln Laboratory. Donald A. Jenkins, ARD-241, Edmund J. Koenke, AEM-20, and Micheal Perie, ARD 102, the Committee Chairman.

The following TSC personnel are being recognized for their contributions during all phases of the BCAS concept evaluation

effort: James P. Andersen, TSC-50, Joseph M. Gutwein, TSC-531, Robert M. Hubbard, NAFEC (formerly TSC-433) and Wilfred Brown, MITRE, Bedford (formerly TSC-411). The efforts of Kentron International are appreciated particularly those of Michael D.Menn and Andrew Tobish. An acknowledgement goes to the efforts of the contractor for building an experimental system, in particular to J. Cole, R. Straub, and R. Galletta of MEGADATA. The flight test plan was designed by HH Aerospace.

Approximately 100 flights and over 200 hours of flight time were accomplished through the efforts of many different National Aviation Facilities Experimental Center (NAFEC) personnel.

While it is impractical to list all, acknowledgement is given herein to the following who supported the Systems and Equipment Engineering Branch, ANA-140 and the Transportation System Center (TSC) in the accomplishment of the project.

Data Processing Branch, ANA-550 Aviation Facilities Division, ANA-600 Surveillance Systems Branch, ANA-120 Plant Services Branch, ANA-530 Hardware Engineering Branch, ANA-730 Instrumentation and Calibration Branch, Systems Test Branch, ANA-110 Eastern Region, ATC and AF personnel at Philadelphia and NAFEC

The contributions of the individuals in these groups at NAFEC are gratefully acknowledged. Due special recognition, however, are the following personnel.

- J. Bailey, ANA-640
- F. Baraccini, ANA-140
- J. Carr, ANA-140
- K. Culbertson, Lockheed
- W. Gadow, ANA-140
- J. Heitz, ANA-120
- P. Karsten, ANA-110

- V. Lasewicz, ANA-140
- R. Lamprect, ANA-640
- V. Luciani, ANA-140
- A. Madge, ANA-140
- D. Riley, ANA-550
- H. Scozzafava, ANA-140
- T. Tait, ANA-550
- T. Turnock, ANA-140
- F. Wesighan, ANA-140.

Special appreciation goes to the technical editor for this report, Kathleen Morely.

~

•

METRIC CONVERSION FACTORS

	Approximate Con	oversians to Metri	c Measures				Approximate Canve	ersians from Mo	tric Massures	
Sumbal	When You Know	Mattialy by	To Find	Symbol		Symbol	When Yes Know	Multiply by	To Fied	Symbol
-1								LENGTH	_	
		LENGTH			*				-	
			•			an a	meilemeters.	0.04	inches	•
						CTI I	contingters	0.4	inches	14
	achen	7.5	centimeters	600		m	meters	3.3	feet	п,
	leet	30	Centimeters	500	<u> </u>	m	meters	1.1	Yerds	40
	- and a	0.9	meters	m		ium.	kilometers	0.6	miles	(A)
	miles	1.6	kilometers	km						
								AREA		
		AREA								
							source continuetors	0.16	scuare inches	"s
_{اھ} 2	acuers inches	6.5	square centimeters	cm ²		m ²	scuare meters	1.2	square vards	تۍ ا
w2	square feet	0.09	square meters	" ²		1 m ²	scutre kilometers	0.4	source miles	m ²
vd ²	square vards	9.8	square maters	" 2		ha	hectares (10,000 m ²) 2.5	80785	
<u> </u>	square miles	2.6	square kilometers	km ²						
	acres	0.4	hectares	ha						
								WASS (weight)		
		NA22 (Meidul)								
				_		ç	grams	0.035	CURCes.	02
02	dunces	28	grama	9		kg	kilograma	2.2	pounds	HD.
12	pounds	0.45	A HOGE BING	ng		t	tonnes (1000 kg)	1.1	short tona	
	2000 (b)	0.9	(Ghine's	1						
	12000 101									
		VOLUME						VOLUME		
				-		m)	milisters	0.03	fluid ounces	ftoz
tsp	teaspoons	5	million and			1	liters	2.1	pints	pt.
Thep	tablespoons	15	millitare	-		1	laters	1.05	guarts	4
ner		34	hanne a			1	liters	0.26	gellans	gal
¢.	cups	0.47			- =	ຼົ່າ	cubic meters	35	cubic feet	fr ³
pr.	pmis	0.47	11073			ື່າ	cubic motors	1.3	cubic yards	vd ³
41 .	quarts	0.55	**16*3		<u> </u>					
981 - 3	garcors	3.0								
	cubic words	0.03	cubic meters)	~ = ~		TEM	PERATURE (#xm	st}	
40		0.70							-	
	TEMP	PERATURE (exact)				°c	Celsius	9/5 (then	Fahranhoit	••
		6.D. L	-				temperature	add 32)	(414,00,00,00,00,00,00,00,00,00,00,00,00,00	
-1	Fehrenheit	5/9 (atter	LOISIUS	L	= "					
		27)	10714/0010101				Pr 12	98.6		52
		346.7			· · · · · · · · · · · · · · · · · · ·		-40 0 140	80 120	160 200	1
					. —		، ت <u>اب ترب بتر</u>		<u>╺╺╺╺</u> ╺ ╺╺╺	4
							-40 -20 0	20 40	60 80 1	00
							●ć	37	•	

TABLE OF CONTENTS

Section

.

Page

-

1.	SUMMA	ARY AND	CONCLUSIO	NS	1
	1.1 1.2 1.3 1.4	General Conclus Flight Analysi	ions Test Summ s Summary	nary	1 1 3 3
2.	BCAS	CONCEPT	DESCRIPT	'ION	9
	2.1 2.2	Definit Experim	tion of Co Mental BCA	oncept S	9 17
		$2.2.1 \\ 2.2.2$	Experimer Experimer	ntal BCAS System Design ntal BCAS Modifications	18 18
3.	ANAL	YSIS			21
	3.1 3.2	Introdu Range a	iction and Bearin	ng Calculation	21 21
		3.2.1	Passive M Reference	Mode BCAS with Azimuth e Signals	24
			$3.2.1.1 \\ 3.2.1.2$	Multiple Solutions Accuracy	25 28
		3.2.2	Passive N Reference	Mode BCAS Without Azimuth e Signals	29
			3.2.2.1	Overall Assessment of the System Without Azimuth Reference Signals	36
			3.2.2.2	Orientation of the Whole Configuration	37
		3.2.3	Solution Equation	of Single-Site BCAS s	38
	3.3	Synchr	onous Gar	ble Analysis	39
		3.3.1	BCAS Act Synchron	ive and Passive Mode ous Garble	39

TABLE OF CONTENTS (CONTINUED)

Section			Page
	3.4 BCAS/	ATCRBS/Monopulse Compatibility	47
4.	FLIGHT TES	ΤΤ	50
	4.1 Fligh4.2 Test4.3 Fligh4.4 Fligh	t Test Environment - General Bed Configuration t Test Patterns t Test Procedures and Conduct	50 53 59 59
5.	FLIGHT TES	T DATA ANALYSIS	69
	5.1 Fligh 5.2 Range 5.3 TOA M 5.4 Diffe 5.5 Own A 5.6 Recei 5.7 North 5.8 High 5.9 X & D	t Test Results -Bearing Evaluation easurement Accuracy rential Azimuth Accuracy zimuth ver Sensitivity Measurements Pulse Kit Interference Rate of Active Interrogation 1	69 70 75 78 81 82 83 84 84
	5.9.1 5.9.2 5.9.3 5.9.4	Background Discussion Analysis Summary and Conclusions	84 85 85 89
	5.10 F2 Tr	acking	89
	5.10. 5.10.	1 Self-Garble Interference 2 Example of F2 Tracking	89 92
	5.11 Fruit 5.12 North 5.13 JTIDS	Measurements Pulse Detection Interference Measurements with	97 99
	BLAS.	•••••••••••••	99
	5.13. 5.13. 5.13.	2 Equipment Tested 3 Applicability of Measurements to	99 101
	5.13. 5.13. 5.13.	the Active Mode of BCAS 4 Flight Tests 5 Analysis 6 Summary of Results	101 101 102 116
	5.14 False Misse	Alarms/False Tracks and Missed Alarms/ d Tracks	117

TABLE OF CONTENTS (CONTINUED)

Section			Page
	5.15 5.16	Synchronous Garble Experimental BCAS Threat Logic	131 132
		5.16.1 Threat Logic Description	132
		Threat Logic Tests	143
		5.16.3 Threat Logic Climb-Dive lest	146
		5.16.4 Level Flight Test Data Analysis.	154
		5.16.5 Results of BCAS TAU Analysis	156
6.	DATA	REDUCTION PROGRAMS	158
	6.1	BCAS Data Tape Processing	158
		BCAS Detailed Processing Program	158
	6.2	Range-Bearing Calculations	159
	6.3	Error Analysis Program	159
	6.4	Plotting Program	164
	0.5 6 6	TOA/DAZ Reply Listings	164
	6.7	Fruit Susceptibility Program	164
	6.8	ARTS III Processing	164
	6.9	Flight History Program	167
	6.10	Chronological Scan Program	100
	6.11	Reply/larget Report	170
	6.13	Widened Azimuth Window	174
	6.14	X&D Pulse Analysis Program	174
7.	NAFE	C PROGRAMS	177
	7.1	NAFEC-BCAS Program	177
	7.2	NAFEC Data Analysis	1/8

-

TABLE OF CONTENTS (CONTINUED)

/

Section	Page
APPENDIX A - Potential Impact on BCAS Performance Due to ATCRBS Improvements/Modifications	A-1
APPENDIX B - Flight Test Patterns	B-1
APPENDIX C - Threat Logic	C-1
APPENDIX D - Range-Bearing Computations	D-1
APPENDIX E - BCAS Flight Test Tape Format	E-1
APPENDIX F - Figures and Tabular Listings	F-1
APPENDIX G - ARTS III Confidence Intervals	G-1
REFERENCES	R-1

xi

.

LIST OF ILLUSTRATIONS (CONTINUED)

-

Figure		Page
5-23	BCAS Detailed Processing Listing - June 1977	150
5-24	BCAS Detailed Processing Listing - April 1977	151
5 - 2 5	BCAS Detailed Processing Program of TOA and DAZ	152
5-26	BCAS Detailed Processing Program of TOA and DAZ for K Scan	153
6-1	BCAS Detailed Processing Listing	160
6-2	Error Analysis	163
6-3	Flight History	165
6 - 4	Flight History II	166
6 - 5	Chronological Scan	169
6-6	Reply/Target Report	171
6 - 7	Flight Statistics I	172
6-8	Flight Statistics II	173
6-9	Flight Statistics III	175
6-10	Widened Azimuth Window	176

LIST OF TABLES

Table		Page
° 3-1	ATCRBS IMPROVEMENTS/MODIFICATIONS WITH POTENTIAL IMPACT ON BCAS OPERATION	48
4 - 1	ANGLE ASSIGNMENTS FOR DAISY PATTERN	66
5-1	EXPERIMENTAL BCAS ACCURACY	69
5 - 2	EXPERIMENTAL BCAS CHARACTERISTICS	71
5 - 3	DIFFERENCES BETWEEN TOA'S MEASURED BY BCAS AND PREDICTED FROM GROUND SYSTEM MEASUREMENTS	76
5 - 4	TOA DIFFERENCES IN MICROSECONDS BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS	78
5 - 5	DIFFERENCES BETWEEN DIFFERENTIAL AZIMUTH MEASURED BY BCAS AND PREDICTED FROM GROUND SYSTEM MEASUREMENTS	79
5-6	DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS	80
5-7	SUBSYSTEM 1 (ASR-5)	86
5 - 8	SUBSYSTEM 2 (ASR-7)	88
5 - 9	FRUIT AND TRANSPONDER REPLIES PER SCAN	9 8
5-10	NORTH PULSES DETECTED PER ANTENNA ROTATION	100
5-11	TOA DIFFERENCES IN MICROSECONDS BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR	104
5-12	DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR	107
5-13	NUMBERS OF FRUIT REPLIES DETECTED PER SCAN WITH JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY CYCLE	108

-

LIST OF TABLES (CONTINUED)

_

<u>Table</u>		Page
5-14	AZIMUTH REFERENCE PULSES DETECTED PER ANTENNA SCAN WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR	111
5-15	NUMBER OF MAIN BEAM HITS PER SCAN	114
5-16	SLS RATIO FOR EACH SCAN WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR	115
5-17	COMPARATIVE DATA ASR-4 VS. BCAS	125
5-18	TAU THREAT ZONES	138
5-19	THREAT CLASSIFICATION CODE	141
5-20	INTERROGATOR AND ANTENNA ASSIGNMENTS	142
5-21	PATTERN A INTERROGATION MODE SUMMARY	145
5-22	PATTERN B INTERROGATION MODE SUMMARY	147
5-23	PATTERN C INTERROGATION MODE SUMMARY	148
5-24	SYNOPSES OF CLIMB-DIVE TESTS	155
5-25	TIE-BREAKER CODE	156
6-1	TSC-BCAS DETAILED PROCESSING PROGRAM	161

1. SUMMARY AND CONCLUSIONS

1.1 GENERAL

Reported are analyses and flight test results of an airderived collision avoidance system concept feasibility study. A possible application of the system is to assure safe separation of aircraft in flight. The concept utilizes the Air Traffic Control Radar Beacon System (ATCRBS) signals in space: ground interrogation signals and intercepted identity and altitude reply messages that they ellicit. From these signals, aircraft surveillance information is obtained and the threat possibility is evaluated. Vertical and possibly horizontal maneuvers may be provided from the Time-of-Arrival (TOA), Differential Azimuth (DAZ), and Own Azimuth (OAZ) measurements from which the range and bearing to an aircraft are computed. Only two experimental systems were evaluated; these represented one of the several design options, but lacked an essential part of the BCAS final design, the automatic ground radar selection and lock-on capability.^{\perp} Another deviation from the final design was in computing the range and bearing to a target. These values were derived using off-line computers from the inflight test data.

1.2 CONCLUSIONS

An extensive analytical effort was carried out in conjunction with the flight test data analysis effort. The conclusion based on the results of those analyses and measurements are as follows:

- 1. Overall Assessment of the BCAS Concept.
 - a. BCAS in a technically feasible concept;
 - b. There is no perceptable interference effect upon ATCRBS surveillance;
 - c. BCAS measurements compare well with ground precision tracking.

¹NAFEC reports that the automatic radar selection and lock-on capability has been verified under the contract No. DOT-TSC-1103, Task 11.

- d. Each design alternative analyzed has some bad configurations to be recognized by the system designers to avoid excessive errors and false tracks; this includes the single-site system concept as well.
- 2. Measured Parameter Accuracy.

a.	TOA	.15 µsec (rms)
b.	DAZ	.3 degress (rms)
c.	OAZ	.25 degrees (rms)

3. Derived Parameter Accuracy for Good Configurations.

a.	Bearing	(θ)	.3	degrees	(rms))
----	---------	-----	----	---------	-------	---

- b. Range to Target 300 feet (rms)
- c. Range to Radar 3000 feet (rms)
- 4. Experimental BCAS Characteristics.
 - a. Number of Targets Tracked 9
 b. Number of Radars Locked 3
 c. Range to SSR (max.) 100 nmi SLS Receiver minus 90dbm MB Receiver minus 65 dbm
 - d. Range to Target (max.) 8 nmi Receiver minus 85 dbm
 - e. Probability of Detection -

All targets within the coverage region detected by BCAS. For some aircraft, both ARTS and BCAS formed multiple tracks, but not necessarily at the same azimuth angle. No missed targets were observed comparing BCAS against ARTS data.

- 5. Design Considerations.
 - a. The proposed design option without radar azimuth reference signals-may not provide sufficient target bearing accuracy to give good tracks. Two aircraft and two radars are the minimum configuration for this system.

- b. A design option requiring azimuth references signals from all radars requires a minimum configuration of two radars and one intruder aircraft to determine the intruder position. Under some circumstances, this system may produce false tracks which can not be distinguished from a true track, except that in time ground radars will appear to move relative to each other.
- c. A mixed mode configuration, when only one radar site is equipped with the azimuth reference signal, provides a measurement accuracy better than the no azimuth reference system, but would not generate false targets as in the previous case. Two targets and two radars are required for a minimum configuration.

1.3 FLIGHT TEST SUMMARY

In a total of fifty-four flights, two-hundred hours of flight test data were recorded at the NAFEC. Some collected data required additional testing, but in general most data were satisfactory. The only tentative area is the evaluation of the threat logic where only qualitative conclusions can be made. These are:

1. Multiple targets which appeared in the Widened Azimuth Window were not verified by ARTS data taken at the same time. In the ARTS data, multiple targets for the same BCAS target appeared at a different azimuth angle.

2. The threat detection logic appeared to be biassed to reduce missed alarm; as a result, it generated some false tracks.

1.4 ANALYSIS SUMMARY

Analyses have been performed for the static case and algorithms have been developed to enable computation of range and bearing to potential threat aircraft and to ground radars, using passive-mode BCAS measurements. Only the static solutions are presented. These are solutions based on the differential time of arrival (TOA), differential azimuth (DAZ) and, where appropriate, own azimuth (OAZ) measurements taken at one instant for the configuration as it exists at that time.

The algorithms compute range and bearing to intruder aircraft and radars on the basis of only the current measurements, making use of no <u>a priori</u> knowledge of either the positions of the aircraft or radars or of any previous measurements. For this reason, the accuracies of the computed positions are likely to be worse than those that would be obtained by dynamic tracking algorithms which would smooth out the effects of measurement errors over time.

The solutions obtained are the solutions that best fit the measurement data. Thus, their accuracy is the intrinsic accuracy to within which the relative positions of intruder aircraft and locked radars can be determined from the measurements made with the given accuracy at one point in time. Dynamic tracking algorithms, when they are developed, may be expected to have better overall performance because they will have available sequences of positions over a period of time and will be able to smooth out measurement errors by effectively averaging over time. The statistically computed accuracies should be suggestive of the accuracies that the tracking algorithms should be able to achieve.

Algorithms for fully passive BCAS were developed and tested in simulations. An algorithm for use in the mixed mode of operation using active interrogation and passive measurement for one locked radar is presented for completeness. The error sensitivity of the solution in this mode of operation has not been analyzed.

Three different modes of purely passive operation have been simulated. These assume all radars equipped with azimuth reference signals, none so equipped, and only one radar so equipped available at a given time.

It appears that when no radars are equipped with azimuth references, the target bearing cannot be derived sufficiently

accurately to give good target tracks. This conclusion should be verified by dynamic simulation.

When all radars are equipped with azimuth reference signals, the positions of single targets can be determined. The range of configurations in which the solution is excessively errorsensitive is smaller than for the other cases, but under some circumstances the measurements lead to ambiguities in that two distinct configurations can give rise to the same measurements.

When only one radar has azimuth reference signals, <u>two</u> target aircraft must be observed to make calculations of position based on passive measurements possible. The range of configurations in which the solution is excessively sensitive to measurement error is larger than when all radars have azimuth reference signals; mulitple solutions do not occur.

In the good configurations of radars and aircraft, target aircraft positions can be determined to within an RMS error of less than 300 feet, assuming measurement accuracies like those obtained by the experimental BCAS system. Radar positions can be determined much less accurately. Errors range from somewhat less than a mile to several miles in configurations with small differential azimuths. The system with two target aircraft is slightly better.

It is judged that either system - assuming all radars equipped with azimuth reference signals or only one radar within BCAS range so equipped - is technically feasible.

1. <u>All radars are assumed equipped with azimuth reference</u> signals.

In this situation, the range and bearing from BCAS of a <u>single</u> intruder aircraft can be determined if it is being tracked by BCAS using two or more ground radars. The range to each radar can also be calculated.

Both simulated and flight test data verify that this mode of operation is possible in all but a set of unfavorable configurations. The unfavorable configurations are the following:

- a) BCAS in line with the two radars; both radars on one side.
- b) The intruder aircraft between BCAS and either of the radars.
- c) The BCAS aircraft between one of the radars and the intruder.

The width of the bad ranges depends on the characteristics of the configuration as a whole. In the worst part of each, the iterative solution algorithm fails to converge to any solution. Near the edges of the bad region, the configuration computed from the measurements is highly sensitive to measurement errors. This error sensitivity is intrinsic in that the configurations are such that large changes in the relative positions of the aircraft (and radars) cause small changes in the observed measurements. Then, inversely, small changes in the measurements, such as those arising from measurement noise, cause large changes in the configuration that can be deduced from the measurements.

Outside the bad ranges, the relative position of the intruder aircraft can be calculated with an RMS error in position of generally less than 300 feet, depending on the configuration.

The ranges to the radars can also be calculated, but the values obtained are quite sensitive to errors in the measurement of differential azimuth and may have errors of several miles.

It is important to notice that, under some circumstances, two distinct configurations of radars and aircraft will produce the same set of values for all the measurements obtained by the BCAS. In such a case, it is theoretically impossible to determine from the set of static measurements obtained at one time which of the possible configurations actually gave rise to the measurements. The ambiguity can be resolved by making other measurements, e.g., an active measurement of target range. In addition, although the possibility of the false solution may persist for a period of time, so that a false track for the intruder may be established instead of the true one, the radar positions computed in conjunction with the false track will in time be seen to be inconsistent

б

in that the radars will appear to move relative to each other.

2. <u>No radars are assumed equipped with azimuth reference</u> signals.

In this situation, BCAS can determine the shape of the configuration of radars and aircraft if there are two radars and <u>two</u> target aircraft. The measurements contain no absolute azimuth reference signal. Hence, the orientation of the configuration cannot be determined directly, but only the bearing of each radar and aircraft relative to some arbitrary reference within the configuration.

It has been suggested that the BCAS-equipped aircraft might be able to compute its own position relative to the radars at a number of consecutive times. Then it could relate its own flight direction to the fixed direction of the line connecting the two radars and use that as the known reference direction in determining the bearing angles toward the intruder aircraft.

It was found in the course of the simulations that the range of configurations in which the computed results are intrinsically highly sensitive to measurement error is more extensive in this case than in the case where both radars are equipped with azimuth reference signals. The bad configurations include the following:

- a) BCAS in line with the two radars; both radar on one side.
- b) Either intruder aircraft between BCAS and either of the radars.
- c) Both intruder aircraft in the same direction as viewed from BCAS.

In addition, the current heuristic algorithm used to obtain an initial approximation tends to fail when an intruder aircraft is in the direction directly opposite that of a radar, when viewed from BCAS, or when BCAS is directly between the intruder aircraft. The difficulty in these regions can be eliminated, since it arises from the algorithm used, and not from the nature of the dependence between the configuration and the measurements.

For those configurations in which the aircraft and radar positions can be reliably computed, (i.e., in the good ranges), the errors in range to the target aircraft are comparable to the errors obtained using radars that are all equipped with azimuth reference signals. The computed radar distances are considerably more accurate. However, the bearing angles computed relative to the line connecting the radars have errors on the order of several degrees. This suggests that the proposed scheme of operation with no azimuth reference signals at all may have difficulties. A definitive judgment must rest on an analysis of a tracking scheme in the dynamic situation.

3. <u>Some radars</u>, but not all, are equipped with azimuth reference signals.

It is assumed that the BCAS at any one time would be in range of only one radar with azimuth reference signals. Other radars would be available for locking and for tracking targets, but these would not have azimuth reference signals.

In such a situation, the problem of computing the configuration of radars and aircraft at any one instant is essentially the same as in the case of no azimuth reference signals. Two radars and two aircraft are required. The only difference is that, once the shape of the configuration has been determined, it can be properly oriented on the basis of the azimuth measurement.

The extent of the bad range for this case is identically the same as in the case of the system with no azimuth references, as is the error sensitivity of the computed ranges to the intruder aircraft and the radars. The bearing errors to the radars and the aircraft are smaller than those achieved when no radars are equipped with azimuth reference signals.

2, BCAS CONCEPT DESCRIPTION

2.1 DEFINITION OF CONCEPT

The Beacon-based Collision Avoidance System (BCAS) concept (which in a few cases differs from the experimental BCAS design) is based on the use of Air Traffic Radar Beacon System (ATCRBS) signals in space. By receiving both interrogations from multiple ground sites and their elicited target replies and processing them in an on-board computer, the BCAS detects all targets in a coverage volume, computes their range and bearing in real time, identifies potential threats, and determines suitable evasive maneuvers. Both the indicated maneuver and the relative position of other aircraft are displayed to the pilot.

The basic differences in concept between BCAS and other CAS systems are that BCAS derives and uses the bearing to the threat, and that BCAS explicitly uses ATCRBS signals without interference to ATC operations.

In particular,

1) The threat determination and the selection of evasive maneuvers are performed in flight, independently of ground surveillance and computers.

2) Both vertical and horizontal evasive maneuvers may be selected, as appropriate.

3) BCAS derives the bearing to the threat by multilateration techniques, using signals from several ground sites received on an omni antenna, instead of using scanning beam antennas or RF phase measurement techniques.

4) BCAS provides protection against all aircraft equipped with standard ATCRBS Mode C transponders. It does not require any special equipment on the threat aircraft for operation.

BCAS has two operating modes--passive and active. The principal operating mode is the BCAS passive mode. In the passive mode, the BCAS monitors ground radar interrogations and transponder replies without emitting interrogations of its own. (See Figure 2-1)

FIGURE 2-1. PASSIVE BCAS

10

From the sequences of interrogations received by the BCAS aircraft while in the successive main beams of the ground interrogator, the BCAS can determine characteristics of the radar which allow it to "lock on" the radar., i.e., to calculate the relative angular position of its antenna and to predict the time of occurrence and the mode of its interrogations. Basic properties that characterize each radar are interrogation frequency, interrogation mode interlace, and rotation period. Each radar has a fixed interrogation sequence, generally distinct from those of all other radars in its area. The interrogation sequence may be either a fixed pulse repetition period (PRP) sequence, in which all interrogations are uniformly spaced, or a staggered PRP sequence, in which a sequence of up to 8 different PRP's repeats periodically. Each radar also has a fixed interrogation mode interlace pattern, typically ACAC or AACAAC (A identity, C altitude) and a constant antenna rotation rate. All interrogator antennas rotate clockwise, i.e., W to N to E.

Two basic measurements, the DAZ and TOA are made in the passive mode and serve to relate the position of the BCAS, the interrogator, and the target aircraft.

<u>The Differential Azimuth (DAZ)</u> is the angle between the BCAS equipped aircraft and the aircraft of interest as measured from the ground site. It is the angle between the interrogator beam when pointing at the BCAS and when pointing at the other aircraft. It is computed by dividing the interval between the time that the interrogator antenna points at the BCAS and the time it points at the other aircraft by the rotation period of the antenna. The time that the antenna points at the BCAS is taken to be at the middle of the burst of main beam interrogations received. The time that it points at the other aircraft is taken to be at the middle of the group of replies elicited by the interrogator and received by the BCAS "listening in".

<u>The Time of Arrival (TOA</u>) is a delay in time between the directly received interrogation at the BCAS equipped aircraft and the time of receipt of the intercepted reply from the other

aircraft to the same ground radar interrogation. It is a measure of the difference between the straight line distance from the SSR to the BCAS and the sum of the distances from the SSR to the other aircraft and from the other aircraft to the BCAS. If both the BCAS and the other aircraft are simultaneously in the main beam of the interrogator, the TOA can be measured directly as the interval between the receipt of the ${\rm P}_{\rm 3}$ pulse from the interrogator and the transponder reply from the other aircraft, (reduced by 3 microseconds to compensate for the transponder delay). When only the other aircraft is in the main beam of the interrogator, the TOA is determined as the interval between the calculated time the P_3 pulse would have been received and the receipt of the transponder reply, corrected by a 3 microsecond transponder delay. The time at which the P_3 pulse would have been received may be calculated in two ways. The BCAS may receive the P_1 and P_2 pulses radiated outside the main beam for side lobe suppression and add to the time of receipt of the P_1 pulse the $P_1 - P_3$ interval appropriate to the interrogation mode used. Alternatively, the BCAS may calculate all P_3 times on the basis of the main beam interrogation times and the measured interrogation patterns and pulse repetition periods (PRP). Both approaches have been implemented in versions of the experimental BCAS system.

If the ground radar site is equipped to generate an azimuth reference signal, then the BCAS can also determine its <u>Own Azimuth</u> (OAZ) with respect to the radar by comparing the interval between the azimuth signal when the antenna is pointed in a known direction and the time of main beam center passage past the own aircraft with the antenna rotation period. In general, the BCAS and the threat aircraft must both be in the coverage region of at least two of the same ground radars if the calculation of the other aircraft's position with respect to the BCAS is to be possible on the basis of the passive mode measurements.

Outside of such ground radar coverage, the BCAS operates in the active mode, emitting ATCRBS-compatible interrogations with

an on-board transmitter. The TOA measurements obtained from the active interrogations are directly proportional to range. The target altitude is obtained from mode C replies.

In the total absence of the ground radar coverage, e.g., over the ocean, active mode BCAS (See Figure 2-2) has available only range and relative altitude information from which only vertical threat avoidance maneuvers can be determined.

In a single ground radar coverage (See Figure 2-3) with known azimuth, the passive and active measurements may be combined and are sufficient to calculate the bearings to the threat, so that horizontal threat avoidance maneuvers can be selected where appropriate.

There is a variety of conditions under which the positions of threat aircraft relative to the BCAS can be computed from the BCAS measurements. In general, if own azimuth (OAZ) to two ground radars is known, then the range and bearing to a single target can be calculated from the passive mode BCAS measurements. The calculations also yield values for the distances to the radars, though these tend to be quite sensitive to measurement errors.

If OAZ relative to both ground radars is not known, then no solution based only on passive mode measurements is possible for a single target aircraft. In the presence of two targets, it is possible to compute the range to each target and each radar, and the bearings of the radar and the targets relative to each other. i.e., one can calculate the shape of the configuration of radars and aircraft, but not its orientation in space. If OAZ to one radar is known, the orientation of the configuration is determined. Otherwise, one can in principle compute the configuration at several successive instants of time, separated by an interval during which the BCAS aircraft has moved, and use the known direction of motion to orient the configuration of aircraft and radars. A solution requiring no OAZ signals from the ground sites is the most desirable one, in that it permits BCAS operation without requiring any modification of ATCRBS ground sites.

14

FIGURE 2-3. PASSIVE/ACTIVE COMBINATION

•

Once the distance and direction from the BCAS of a radar has been established, then the position of any number of potential threat aircraft relative to the BCAS can be determined from the DAZ and TOA measurements of that one radar.

The basic principle of BCAS is to listen in on ATCRBS signals in space. The passive listen-in mode listens to the signals generated by the ground ATCRBS sites and their elicited Mode A identity and Mode C - altitude reply messages. The 1030 MHz interrogating signals and 1090 MHz reply messages are received in a common time reference to establish two basic measurements: (1) Time-of-Arrival (TOA) and (2) Differential Azimuth (DAZ). If ATCRBS ground sites have been modified to emit azimuth reference pulses, Azimuth can also be determined.

In the active BCAS mode an on-board transmitter generates additional ATCRBS - compatible interrogations and the system can then listen to the elicited aircraft replies. The interval between the time the interrogation signal is sent out and the time that the aircraft reply is received is proportional to the range to the target.

The passive mode is intended for use in areas of dense traffic to minimize interference with the ATC system. It is assumed that such areas in general will have adequate ground radar coverage. The active mode is intended for areas outside of radar coverage (where traffic densities are expected to be low), as well as for exceptional situations where ground radar coverage fails (e.g., due to vertical lobing or line-of-sight interference).

The following discussion of ATCRBS is presented to bring out features fundamental to the BCAS concept.

The ATCRBS system transmits and receives signals on a fourdegree wide beam that sweeps through 360 degrees once every four or 12 seconds, depending on the type of radar installation. Transponder interrogation pulses are transmitted on a frequency of 1030 MHz, and the transponder replies are transmitted on a frequency of 1090 MHz. The interrogation pulses are typically

transmitted once every 2.5 milliseconds, so that an aircraft transponder is interrogated about 20 times as the beam sweeps over it. The interrogation pulses consist of two major pulses that are generally separated by 8 or 21 microseconds, depending on the type of transponder interrogation being employed. The 8microsecond spacing (Mode 3/A) elicits an identity-coded message from the transponder, while the 21-microsecond spacing (Mode C) elicits an altitude-coded message. Other interrogation types, characterized by different pulse spacing, are defined. The BCAS is not required to reply to these or to recognize replies to them from other aircraft. However, the BCAS will be able to identify their presence in the mode interlace pattern in order to determine the radar stagger pattern, so as to be able to lock to a radar using other modes in addition to modes 3/A and C. A11 transponder replies are delayed by 3 microseconds, and the subsequent reply consists of two framing pulses separated by 20.3 microseconds, with up to 12 identity or altitude code pulses between the framing pulses.

2.2 EXPERIMENTAL BCAS

The experimental BCAS differs in only a few respects from the BCAS concept described in Section 2.1. It is based on the concept of listening in on the ATCRBS ground interrogations and their elicited replies within ground radar coverage areas, and of generating ATCRBS-compatible interrogations with an on-board transmitter in those areas where ground radar coverage is poor or nonexistent. Experimental BCAS does not require any a priori knowledge of the environment, the radar sites, or target equippage, and it provides protection only if the threat aircraft is equipped with an ATCRBS transponder replying with both altitude and identity codes (Mode C). At the time for the tests reported here, the system required operator intervension to achieve radar lock, and the computations of the target range and bearing were carried out on the ground from data recorded in flight.

2.2.1 Experimental BCAS System Design

A block diagram of the experimental system designed to test operation in both the passive and the active mode is shown in Figure 2-4, and its functional diagram in Figure 2-5.

The system was locked manually to ground radars with both fixed and staggered PRP's and measure TOA's and DAZ's. A number of SSR's were modified to emit azimuth reference signals so that the system could also determine OAZ. For the purpose of <u>this experiment</u> <u>only</u> the azimuth pulses were radiated at 1030 MHz on the omni and main beam antennas of the interrogators 2 microseconds after the P₃ pulse. The experimental system (See Figure 2-4) included a magnetic tape drive for recording data for post-flight analysis, and a color alphanumeric CRT display and a teletype for real-time performance monitoring. Range and bearing calculations for threat aircraft were performed after the flight from the recorded data. The system included an active interrogator to allow simple active mode operation in addition to the passive mode operation, and combination of active and passive modes.

2.2.2 Experimental BCAS Modifications

Two major improvements are being added to the experimental system: (1) automatic radar selection and lock-on and (2) maintaining radar lock by synchronizing the BCAS internal clock with the main beam interrogations, rather than by continuously monitoring SLS pulses. Both modifications have already been tested successfully according to information from NAFEC. Additional BCAS improvements are being sought; these will include in-flight computation of target range and bearing for estimating flight trajectories and the resultant capability to determine and command horizontal evasive maneuvers.

FIGURE 2-4. EXPERIMENTAL BCAS SYSTEM

,

FIGURE 2-5. BCAS FUNCTIONAL BLOCK DIAGRAM

3. ANALYSIS

3.1 INTRODUCTION

è.

This section summarizes analyses of the BCAS concept feasibility assessment study. Only a limited development of the equations is given in the report; for more details one should refer to the following references: (1) Report number FAA-RD-78-34, "BCAS Alternative Concepts for Determining Target Positions" discusses trade-offs of alternative designs, and (2) Report number FAA-RD-78-2, "BCAS Airborne Antenna Diversity Study" reports flight test results and conclusions on the BCAS link reliability measurements for the general aviation aircraft for both top and bottom mounted antennas. Interference analysis details not covered adequately in this report are available in the Technical Memorandum No. 1, "Tests and Analysis of JTIDS Interference with BCAS."

3.2 RANGE AND BEARING CALCULATION

Figure 3-1 shows the geometric relationship between the range and bearing of a target aircraft and the quantities measured by BCAS by monitoring the interrogations and elicited replies of a single SSR site.

The following equations describe the relationships among the various parameters analytically. The subscript i designates one SSR out of the available set:

The measured quantities are:

 β_i = OWN azimuth of SSR to BCAS (DAZ) α_i = differential azimuth (DAZ) T_i = the time of arrival (TOA) H = altitude of target H_o = altitude of BCAS

The initially (unknown) quantities describing the configuration are:

S_i = slant distance between SSR and target D_i = slant distance between SSR and BCAS

FIGURE 3-1. SINGLE SITE GEOMETRY

•

- R = slant distance between BCAS and target
- θ = bearing of target from BCAS

Then the TOA, by definition, satisfies

$$T_{i} = \frac{1}{c} (S_{i} + R - D_{i})$$
 3.2.1

By the law of cosines, the differential azimuth (DAZ) satsifies

$$\cos \alpha_{i} = \frac{s_{i}^{2} + d_{i}^{2} - r^{2}}{2 s_{i} d_{i}}$$
 3.2.2

$$= \frac{S_{i}^{2} + D_{i}^{2} - R^{2} - 2HH_{o}}{2\sqrt{(S_{i}^{2} - H^{2})(D_{i}^{2} - H_{o}^{2})}}$$

It follows from the law of sines that

$$\sin (\beta_{i} - \theta) = \frac{s_{1}}{r} \sin \alpha_{i} = \frac{3.2.3}{\sqrt{R^{2} - (H - H_{0})^{2}}} \sin \alpha_{i}$$

This last equation (3.2.3) could be used to eliminate S_i from (3.2.1) and (3.2.2). This would leave a set of two equations relating the BCAS measurements T_i , α_i , and β_i to the three unknown R, θ , and D_i . This set of equations can not be solved without data from additional measurements. The measurements from two (or more) interrogators are required to solve for R, θ and D_i . Alternatively if R is determined by active measurement, then θ can be determined from the TOA, DAZ and OAZ measurement from a single site.

The following design concepts were evaluated.

1. Passive Mode BCAS; two design options:

(a) The azimuth reference signal based concept where two ground interrogators and a simple target define the minimum system.

- (b) The no-azimuth reference signal based concept, where two ground interrogators and two targets define the minimum system.
- 2. Mixed Mode BCAS; Azimuth/No-Azimuth Reference Signal Combination.

The azimuth reference signal is required for at least one of the interrogator sites. Two interrogators and also two targets define the minimum system.

3. Single-Site BCAS.

A single interrogator site with azimuth reference signal, a single target, and BCAS active mode interrogation define the system.

The solution of the sets of equations arising in each of these systems is discussed in detail in Reference 3.

The major emphasis was placed on the study of whether the azimuth reference signals from SSR sites are necessary. A comparison of the alternative techniques was conducted based on the accuracies in determining the range and bearing to a target from BCAS equipped aircraft.

3.2.1 Passive Mode BCAS with Azimuth Reference Signals

A significant part of the analysis was devoted to the assessment of the operation of the BCAS passive mode using azimuth reference signals emitted by the ground interrogator sites. The only case considered included two radar sites and a single target. An algorithm was developed and implemented on a FORTRAN-coded computer program for the TSC time-share computer system to compute range and bearing to a target from the inputs using data collected in-flight and from translated data.

The results of these tests and the associated analyses are the following.

1. In the absence of measurement noise, the relative position of the aircraft and radars can be determined exactly from the BCAS measurements, unless multiple solutions occur.

- 2. There exist distinct and different pairs of configurations of radars and aircraft in which the BCAS will receive identical sets of measurements, even in the absence of measurement noise. If the BCAS receives a set of measurements that may correspond to either of several configurations, there is no basis within the set of measurements pertaining to one aircraft at one instant of time for selecting the actual configuration correctly. If more data become available, either by observing other aircraft replying to the same radars or observing the same aircraft over an interval of time, it may become possible to resolve the ambiguity.
- 3. When measurement noise is present, the effect of the noise on the accuracy with which the relative positions of the aircraft and radars can be determined is a function of the configuration. Assuming measurement errors in TOA, DAZ and OAZ of the magnitude experienced by the experimental BCAS, the errors in the computed position of the other aircraft were less than 100 meters for a wide range of "good" configurations. They were sometimes much larger in the "bad" ranges, as discussed below.

3.2.1.1 Multiple Solutions - The reason multiple solutions come about can be explained in terms of a sequence of geometric arguments.

Geometrically, the measurements from one SSR relate the position of the target aircraft to that of the BCAS in the following way:

For a given OAZ and a given separation d between the radar and the BCAS, the TOA determines an ellipsoid of revolution on which the target must lie. The radar and the BCAS are at the foci of this ellipsoid. The differential azimuth determines a vertical plane passing through the radar and the target. The target altitude determines its horizontal plane.

For a given value of d, the position of the target aircraft is the intersection of these loci. Thus, the intersection of the TOA ellipsoid with the altitude plane is an ellipse E in the altitude plane.

The target must be where the ellipse is intersected by the vertical plane determined by the DAZ. If the radar lies within the ellipse E (projected to ground level), then there is only one such intersection and the target position is uniquely determined (for the assumed value of d). If the radar lies outside this ellipse, there are two intersections, and a target at either would result in the same measured values of TOA and DAZ (again for the assumed value of d). This second condition can be visualized as coming about if the TOA ellipsoid is long and inclined, cut by the horizontal altitude plane at the end away from the radar. (In fact, a necessary algebraic condition for the speed of light).

In the normal passive BCAS operation, the distance d of the BCAS to the radar is not given. Different values can be assumed, and for each value the position(s) of the target corresponding to the measurement set can be constructed. As the assumed radar-to-BCAS distances ranges over all possible values, these possible target positions form a curve of two distinct curves, which are the locus of possible positions of the target consistent with the known BCAS and target altitudes and the measurements of TOA, DAZ, OAZ for the one radar. Similarly, the locus of possible target positions can also be constructed for another radar. The target position must be consistent with both sets of measurements; hence the target must be at a position where the locus curves intersect. If the set of requirements for each radar gives rise to only one locus curve, the target position is uniquely determined as the intersection of these two curves. If. however, one or both sets of measurement gives rise to two distinct locus curves, then more than one intersection is possible, as seen in Figure 3-2 (Reference 3, Sections 2 and 5).

Illustration of case of two possible solutions for target position, given measurements from two radars with azimuth reference signals and one target.

FIGURE 3-2. MULTIPLE TARGET SOLUTION

In cases when multiple solutions exist, it is important that the correct one be found and that the false solution be identified as such and rejected. The algorithm tested will find only one solution in each case, which may or may not be the true one. An extension to the algorithm has been developed but not yet tested to find all solutions, when more than one may exist.

Recognition of the true solution may rest on observing the consistency of the computed radar distances. If several actual target aircraft are available, those solutions (where there are several) must be selected which lead to consistent values for computed radar distances.

If there is only one aircraft and that gives rise to multiple solutions, then tracks must be formed corresponding to all solutions. In time, it will appear that the radar positions corresponding to the false solution will appear to move with respect to each other. Once this is established, the false track can be identified.

If the replies of the target to a third radar can be monitored (or active interrogation can be performed), another consistency check can be performed to reject the false solution.

3.2.1.2 Accuracy - In "good" configurations of radars and aircraft, measurement errors of the magnitude obtained by the experimental BCAS (i.e. TOA errors with an RMS error of .15 microseconds and DAZ errors with an RMS value of .25°) lead to relative position errors for the other aircraft on the order of 300 feet in most geometric configurations. The errors in the computed ranges to the radar in these configurations tend to be on the order of a few thousand feet. However, there exist configurations in which relatively large displacements of the targets or radars lead to small changes in measurements made by BCAS, or inversely, small changes in measurement set. This means that the values of range and bearing calculated from noisy measurements will show

large deviations from their actual values as a result of random measurement errors. In some cases, the iterative algorithm may fail to converge.

The configurations which may generate poor results are the following:

- 1. Both radars in the same direction from the BCAS aircraft $(OAZ_1 OAZ_2$ less than $\sim 10^\circ$).
- 2. The intruder aircraft between the BCAS and one of the ground radars ($|\beta_1 \theta|$ less than $\sim 15^{\circ}$).
- 3. The intruder aircraft in the direction opposite the radar from BCAS ($|\beta_i \theta 180^\circ|$ less than $\sim 3^\circ$).

3.2.2 Passive Mode BCAS Without Azimuth Reference Signals

A purely passive BCAS system without azimuth reference signals can operate when there are two radars and two targets.

Since all the measurements available to the system are invariant under rotation of the whole configuration, the bearing of one radar may be specified arbitrarily. The three relative bearing angles in the configuration are defined in terms of the arbitrary reference direction.

The quantities measured are four TOA's, four DAZ's, and three altitudes, or eleven measurements in all.

The interrelationship between measured and derived parameters is shown in Figure 3-3.

Solutions to be found are for the parameters describing the configuration. These are two distances to the ground interrogators from OWN, two distances to both targets, three bearing angles and three aircraft altitudes, or ten parameters in all. Thus, the problem is overdetermined.

The method of solution is complicated and consists of a number of steps. At the end, a solution is sought which in a useful sense is a best fit to the data. The solution proceeds in three separate

FIGURE 3-3. MEASURED AND COMPUTED PARAMETERS

essentially independent steps - coarse initialization, iterative refinement, and least-squared-error fitting. The details of the algorithm are discussed in Reference 3. An outline describing the nature of the steps is presented below.

<u>Step 1</u>: The coarse initialization is based on the simplifying assumptions that the BCAS-to-target distances are much smaller than the BCAS-to-radar distances and that all aircraft altitudes can be neglected. These simplifications allow the inherently non-linear set of 8 equations

$$T_{ij} = S_{ij} + R_{j} - D_{i}$$

$$cos\alpha_{ij} = \frac{S_{ij} + d_{i}^{2} - r_{j}^{2}}{2S_{ij} d_{i}}$$

$$(i=1,2; j=1,2)$$
3.2.4

to be reduced by various algebraic manipulations and successive elimination of variables to a pair of simultaneous linear equations that is solved for the target distances r_1 and r_2 . The original set of equations for this simplified case is still overdetermined (assuming the altitudes to be 0, there are 8 equations corresponding to the measurements to be solved for seven parameters defining the configuration). Therefore inconsistent sets of values can be obtained for the other variables defining the configuration, depending on the order in which the variables already solved for were substituted back into the equations to evaluate the others. The choice made is to determine each radar-to-BCAS distance on the basis of the greater DAZ (so as to minimize the percentage error due to measurement errors). The other quantities are computed in an essentially random order, with no attempt made to minimize the resultant inconsistencies.

<u>Step 2</u>: The coarse initialization obtained in Step 1 serves as the initial configuration to be improved iteratively in Step 2. The main goal of the process is to take into proper account the aircraft altitudes, neglected during Step 1. Further, explicit note is taken of the fact that the system of equations is overdetermined.

The calculations are performed iteratively. The distances and angles are computed for the projection of the 3-dimensional configuration of the aircraft on the horizontal plane. The effect of the aircraft altitudes is taken into account by modifying the measured values of TOA to compensate for the altitude.

One may note that the TOA

$$\Gamma = \sqrt{s^{2} + H^{2}} + \sqrt{r^{2} + (H - H_{0})^{2}} - \sqrt{d^{2} + H_{0}^{2}} \qquad 3.2.6$$

$$= s + \varepsilon_{S} + r + \varepsilon_{r} - d - \varepsilon_{d} \qquad 3.2.7$$

where

$$\varepsilon_{\rm S} = \sqrt{{\rm s}^2 + {\rm H}^2} - {\rm s}$$
 3.2.8

$$\epsilon_{\rm R} = \sqrt{r^2 + (H-H_0)^2} - r$$
 3.2.9

$$\varepsilon_{\rm D} = \sqrt{{\rm d}^2 + {\rm H_0}^2} - {\rm d}$$
 3.2.10

H - altitude of target H₀ - altitude of BCAS

One can therefore write a simplified, apparently linear TOA equation

$$t = s + r - d$$
 3.2.11

where

$$t = T - \varepsilon_{S} - \varepsilon_{R} + \varepsilon_{D}.$$
 3.2.12

At each step of the iteration, the value of t is recomputed on the basis of the best current estimates of s, r and d until convergence is achieved - i.e., until the values do not significantly change from step to step. (In certain "bad" configurations the process does not converge and it is therefore always terminated after some fixed number of iterations.)

A set of three independent equations in the two unknowns d_1 and d_2 is developed. This overdetermined system is solved at each iterative step in the following way:

Three equations developed on the basis of geometric arguments require that:

$$F_{1}(d_{1}, d_{2}) = 0$$

$$F_{2}(d_{1}, d_{2}) = 0$$

$$F_{3}(d_{1}, d_{2}) = 0$$

3.2.13

where F_1 , F_2 , and F_3 are functions only of the BCAS-to-radar distances (d₁ and d₂), the measured differential azimuths, and (the best current estimates of) the adjusted TOA (Equation 3.2.6).

These equations are mutually inconsistent - i.e., for any pair of values (d_1, d_2) , not all three functions F_1 , F_2 , F_3 will be identically zero, but rather they will have values

$$F_{1}(d_{1}, d_{2}) = e_{1}$$

$$F_{2}(d_{1}, d_{2}) = e_{2}$$

$$F_{3}(d_{1}, d_{2}) = e_{3}$$
3.2.14

such that

$$E = (e_1^2 + e_2^2 + e_3^2) \neq 0 \qquad 3.2.15$$

At each step, the iterative algorithm determines changes $(\Delta d_1, \Delta d_2)$ to d_1 and d_2 such as to reduce E, the measure of the inconsistency of the equations.

The changes $(\Delta d_1, \Delta d_2)$ are computed as follows: The equations are made into linear equations in Δd_1 and Δd_2 .

$$F_{i} (d_{1} + \Delta d_{1}, d_{2} + \Delta d_{2}) = F_{i} (d_{1}, d_{2}) + \frac{\partial F_{i}}{\partial d_{i}} \Delta d_{1} + \frac{\partial F_{i}}{\partial d_{2}} \Delta d_{2}$$
$$= m_{i} (\Delta d_{1}, \Delta d_{2})$$

One seeks the values of Δd_1 and Δd_2 which minimize

$$E (\Delta d_1, \Delta d_2) = \sum_{i} e_i (\Delta d_1, \Delta d_2)^2$$
 3.2.17

The minimum occurs when

$$\frac{\partial E}{\partial \Delta d_{j}} = 0$$
 (j = 1,2) 3.2.18

This is a set of two linear equations in the two unknown Δd_1 and Δd_2 . Its solutions are used to improve the current values of d_1 and d_2 , to compute the other parameters that determine the configuration from these, and to update the values of the adjusted TOA's. The iterative step is then repeated until convergence is obtained (or failure to converge is evident).

When this process is used to compute the configuration from simulated noise-free measurements, perfect results are obtained (where the process converges). When noisy measurements are used (i.e. in the practical case), then reasonably good fits to the actual configuration are obtained. However, these are not the best fits to the data. Furthermore, as in the case of Step 1, the parameters defining the configuration are determined by first finding one pair of them - here d_1 and d_2 - and then determining the rest successively by substituting the values of the parameters already solved for into expressions involving the others. Since the overall set of equations is overdetermined, the values obtained will not in general be consistent. No attempt is made in this step to resolve these inconsistencies. The theoretically optimum solution is obtained by Step 3, for which the results obtained here serve as initial values.

<u>Step 3</u>: The final step is again an iterative squared-error minimization process. The eleven quantities measured by BCAS are expressed as functions of the ten various coordinates defining the radar-aircraft configuration.

 $y_{l} = F_{l}$ (X) 3.2.19

where y_{ℓ} is the ℓ -th measurement and $X = (X_1 \dots X_{10})$ is the vector of coordinate values defining the radar aircraft configurations. The components of X are the two BCAS-to-radar distances, the two BCAS-to-aircraft distances, the three relative angles to aircraft and radar from the BCAS, and the three aircraft heights. The y_{ℓ} are the following: four TOA's, three reported altitudes, and for each radar the sum and difference of the differential azimuths of the two target aircraft relative to that radar. (The sum and differences of the DAZ's are used, rather than the DAZ's themselves, because there is correlation between the measurement noise components of the DAZ's, but not between the noise components of their sums and differences.)

The actual measurements m_{ℓ} are noise corrupted, so that there will be a random discrepancy e_{ℓ} between the predicted value y_{ℓ} of a given measurement when the configuration is described by a given set of parameters X and the actual measurement m_{ℓ} .

$$e_{g} = m_{g} - y_{g}(X)$$
 3.2.20

This discrepancy e_{ℓ} is ascribed to measurement error. By what is known as the principle of least squares, the assumed configuration bests fits the measurement data when

$$E = \sum_{\ell} \frac{e_{\ell}^2}{\sigma_{\ell}^2} \qquad 3.2.21$$

$$= \sum_{\ell} \frac{(m_{\ell} - y_{\ell}(X))^{2}}{\sigma_{\ell}^{2}} \qquad 3.2.22$$

is minimized (where σ_{ℓ}^2 's are the variances of the independent errors in the measurements).

The X minimizing E is found iteratively. The set equations for the errors are first made into a set of linear equations in terms of ΔX , incremented changes about the true minimum configuration. The set of equations is of the form

$$\frac{m_{\ell} - F(X_{opt})}{\sigma_{\ell}} = \sum_{k} \frac{\partial F_{\ell}}{\partial X_{k}} \qquad 3.2.23$$

The partial derivatives are evaluated at the current best approximation of the true configuration. Temporarily holding these partial derivatives fixed, standard multivariate regression techniques are used to find the ΔX that minimizes E. The set of coordinates X is then corrected by adding the computed ΔX and the process is repeated until it converges - i.e. until successive ΔX 's become sufficiently small.

3.2.2.1 Overall Assessment of the System Without Azimuth Reference Signals - Simulations were conducted to see how the BCAS would perform from the measurements based on radars without azimuth reference signals. The accuracy of the computed relative positions in "good" configurations was found to be equivalent to that achieved using the system with azimuth reference signals. As in the case of radars with azimuth reference signals, there are ranges of configurations in which the solutions are inherently very sensitive to measurement errors. These configurations include the following:

- 1. when the two radars are colinear when viewed from the BCAS
- 2. when either of the target aircraft is in between the BCAS and one of the radars
- 3. when the BCAS is directly between either target aircraft and one of the radars
- when the BCAS aircraft and both target aircraft are in a line.

The extent of each bad range is a function of the total configuration. Two target aircraft are involved, and the unfavorable placement of either can make the whole configuration "bad". It appears that the probability that a configuration will be "bad" is therefore greater for the no-azimuth-reference system than for a system based on azimuth reference signals requiring only one target aircraft for solution.

Aside from the inherent inaccuracy of the solutions in certain configurations that arises from the nature of the relationship of the configuration to the measurements (large changes in configuration correspond to small changes in the measurements), there are still difficulties with the solution algorithms as currently implemented.

The final iterative least-square fitting process (Step 3) will converge only if the initial approximation to the configuration is close enough to the final configuration. Trial simulations showed that neither Step 1 nor Step 1 and Step 2 in combination always resulted in sufficiently good approximations. In a series of trials, using ten sets of noisy measurements at each of 216 different configurations, it was found that roughly 70% of the time either the coarse initialization (Step 1) by itself or in combination with Step 2 gave a good initial approximation, and some 18% of the time neither did. The rest of the time, one or the other process gave a good initialization, but not both. Thus there is seen to be room for improvement in both processes. However, most of the cases of failure to achieve a good initialization occurred in configurations in which the final and theoretically best achieveable fit was in any case highly error-sensitive.

3.2.2.2 Orientation of the Whole Configuration - Only relative angles are computed in the no-azimuth-reference-signal system considered above. To detect threats and select evasive maneuvers, we must determine the bearing of targets relative to the OWN aircraft flight direction.

Two possible schemes to do this were considered. First, one can compute OWN's position relative to the radars at a number of successive observation times. Then the known direction of OWN flight can be related to the fixed direction of the line connecting the radars. Then, whenever a configuration is computed, all bearings can be related to this fixed line. The simulations that were conducted showed that bearings relative to the line of positions of the radars could be calculated accurately to within an error of generally less than a degree, given the expected measurement errors. The dynamic calculations of establishing the direction of this line from the known direction of OWN flight were not simulated. The process must by its nature take some time.

An alternative, instant way of establishing all bearings exists if in every region at least one ground radar emits azimuth reference signals. If only one such radar is available, then the determination of the shape of the radar-aircraft configuration must be carried out by the technique described for no azimuth reference signal, but the known (measured) bearing of the radar from OWN can then be used to orient the whole configuration immediately.

3.2.3 Solution of Single-Site BCAS Equations

The situation was considered that the BCAS may be locked to a single radar, which is assumed to furnish azimuth reference signals. The information to be derived from passive listening-in to only one radar is insufficient to determine the position of the target. A solution for target bearing and radar range is possible if measurements of target range obtained by active mode interrogation are combined with the passive mode TOA, OAZ and DAZ measurements from the one radar.

Two algorithms have been developed to perform this calculation. One is an iterative scheme relying on geometric arguments (Reference 3, Section 4). The other technique involves the exact solution of the equations relating the configuration parameters and the measurements. In particular, a fourth-order algebraic equation (polynomial) is developed in the argument X, where X is the sine of an angle related to the target bearing angle. The equation is solved exactly (by formula). The real roots (when more than one is obtained) are tested for consistency with the geometric constraints to obtain those which correspond to the actual solution. Limited simulations have been performed using this algorithm.

It has been established that bearing accuracies comparable to those for the purely passive schemes are obtained in the presence of measurement errors. Multiple solutions occur in some configurations which are consistent with all the measurements. These come about in essentially the same way as those which occur with the two-radar passive solution found for radars with azimuth reference signals (Section 3.2.1.1). There are two "bad ranges", centered on target positions which have the radar and the BCAS and target aircraft colinear.

Sample runs were conducted, simulating a BCAS aircraft 20 miles from a radar, and a target 3 miles from the BCAS. Both when the target was between the BCAS and the radar and when it was roughly in the direction opposite from the radar, the width of the bad range was some 40°. In the bad range, the bearing error was on the order of several degrees. Elsewhere it was generally less than one degree.

3.3 SYNCHRONOUS GARBLE ANALYSIS

3.3.1 BCAS Active and Passive Mode Synchronous Garble

Synchronous garble is caused by the coincidence of two reply messages in time. It is a more severe problem for BCAS than it is for the ATCRBS system. The active BCAS both interrogates and receives target replies via an omni antenna, while ATCRBS interrogates and receives replies only within a 4° wide beam. Since the ATCRBS reply is 20.3 microseconds long, the active BCAS will get overlapping replies to an interrogation from any pair of aircraft located anywhere in a spherical shell centered at the BCAS and 1.6 nautical miles thick. The problem of synchronous garble, among others, serves to restrict the use of active BCAS to regions of relatively low traffic density.

Synchronous garble may also occur in passive BCAS operation when the target aircraft are being interrogated by a ground SSR. However, the replies from two targets will arrive garbled at a passive BCAS only if the target locations satisfy a more extensive set of conditions. Two targets will garble only if they lie in the same interrogator beam-width and also on the ellipsoidal constant-TOA surfaces that correspond to TOA's separated by less than 20.3 microseconds. The volume of such airspace depends in a complicated way on the radar and aircraft geometry, but is in general smaller than for the active BCAS. Another way to assess the likelihood of synchronous garble is to assume a configuration of two target aircraft and to then consider the volume of airspace within which a BCAS aircraft would receive their replies synchronously garbled.

For an active BCAS, there is always a region in which it will receive the replies of two targets synchronously garbled. This region lies about the plane of symmetry separating the two targets. Regardless of how far apart the targets are, an active BCAS equidistant from both will necessarily receive their replies completely overlapped. There will be partial overlap of the replies as the BCAS moves off the plane of symmetry, and if the targets are sufficiently far apart, the BCAS will receive their replies in the clear. The boundaries between the region in which the BCAS receives the replies in the clear and in which they arrive overlapped is hyperbolic (see Figures 3-4 to 3-9). The region in which reception is garbled becomes more extensive as the targets come closer together. When they are within 10,150 feet or less, it encompasses all space.

For passive BCAS, there is no synchronous garble unless both target aircraft are illuminated by the same ground SSR beam. If two target aircraft are colinear with an SSR interrogator, there always exists a region in which their replies are received garbled. The size of this region depends on the separation of the aircraft; its shape is that of a hyperboloid of revolution whose focus is one of the aircraft. Independent of the distance between the two aircraft, their replies will totally overlap in time along the extension of the line of position of the radar and the two aircraft beyond the farther aircraft. If the aircraft are far apart, there is a narrow region, hyperbolic and convex toward the radar, within which the replies will be received at least partly overlapped. This region becomes wider when the planes are closer together, and ultimately become concave toward the radar for separations less than 20,300 feet.

FIGURE 3-4. GARBLE ZONES FOR THE 6 MILE SEPARATION

FIGURE 3-5. GARBLE ZONES FOR THE 5 MILE SEPARATION

•

.

FIGURE 3-6. GARBLE ZONES FOR THE 4 MILE SEPARATION

.

FIGURE 3-7. GARBLE ZONES FOR THE 3 MILE SEPARATION

• • ·

•

FIGURE 3-8. GARBLE ZONES FOR THE 2.6 MILE SEPARATION

FIGURE 3-9. GARBLE ZONES FOR THE 2.1 MILE SEPARATION

When the aircraft come within 10,150 feet (still colinear with the SSR), the region in which their replies overlap encompasses all space.

Figures 3-4 to 3-9 illustrates the shape of the regions in which an active BCAS (vertical shading) and a passive BCAS (horizontal shading) will receive target replies garbled. The figures are plotted for various target separations. The targets and BCAS are assumed to lie in the plane of the diagrams. For passive BCAS, the radar is assumed in the same plane and colinear with the targets. (There is no passive mode garble unless the targets and the radar are aligned.)

Within the garble regions, the extent of the reply overlap varies between complete message coincidence (for active BCAS, on the line of symmetry; for passive BCAS, colinear with the targets and beyond them, when viewed from the radar) to shifted replies just touching (along the hyperbolic boundaries of the garble regions).

For the passive BCAS, flight tests have shown that the synchronous garble phenomenon does occur, but that even in the presence of synchronous garble, the experimental system was able to decode properly 38% of the target replies.

3.4 BCAS/ATCRBS/MONOPULSE COMPATIBILITY

A number of improvements/modifications are being implemented or planned to improve the performance of the ATCRBS system. In FAA Order 6360, Air Traffic Control Radar Beacon System (ATCRBS) Improvments Program, the various planned improvements/modifications were classified into fourteen (14) categories. In Appendix A, these 14 categories were examined to determine which ones have a potential impact on BCAS operation and deserve further studies and evaluating.

In Table 3-1 are listed the selected categories which were judged to have a potential impact on BCAS operation. Categories IA.3 and IC.5 pertain to improvements affecting BCAS coverage.

Category	Relevant Improvements	Potential Impact on BCAS	Action Required
I. <u>A.3(a) Power</u> Reduction	a) Reduce Power to Minimum Requirements	a) Reduces Coverage Area	a) Assess Impact on Coverage-Range of SLS Signals.
<u>C.5(b)(c) Inter-</u> rogator Modifications	b) Azimuth Gate Power Output c) Trevose Fix	 b) Reduce Coverage at Some Azimuth c) Suppresses Transponder Replies at Some Azimuth Impact Unknown 	 b) Site Specific Coverage Analysis c) Site Specific Study and Analysis
II. C.1(b) <u>Improved</u> <u>Antenna</u>	b1) "Integral"; SLS b2) Monopulse Operation	bl) Unknown - signals radiate in restricted azimuth b2) Unknown-Fewer Pulses Per Scan	 b1) Assess Impact of "Integral" SLS antenna pattern b2) Assess Impact of Monopulse Operation

TABLE 3-1. ATCRBS IMPROVEMENTS/MODIFICATIONS WITH POTENTIAL IMPACT ON BCAS OPERATION

Reduction of transmitted power to minimum required levels (to minimize interference) would reduce the coverage area. The other interference reducing improvements are site specific and should be analyzed as such.

Category IIC.1 appears to be the main category with a major potential impact on BCAS operation. This improvement/modifications involves the incorporation of a monopulse antenna into the ATCRBS system. The antenna may also utilize an "integral" feed to generate the side lobe suppression (SLS) pattern. An "integral" antenna feed system would provide a better match between the main beam (MB) and the SLS vertical lobing pattern. These improvements/modifications, if incorporated into the ATCRBS system, may result in the following:

- a. In monopulse operation fewer interrogation and target reply pulses would be generated per scan.
- b. In an "integral" antenna system, the transmitted SLS signals would be available in a resitricted azimuth only.

In the passive mode of operation, BCAS operates on the main beam interrogation and SLS signals for locking to ground radars, timing, target detection and measurements of basic parameters such as BCAS own azimuth, differential azimuth, SSR scan period and the time of arrival of target replies. An evaluation of the impact of the above ATCRBS improvements/modifications on BCAS parameters and performance has been initiated.

4. FLIGHT TEST

During a nine month period approximately 100 BCAS flights were flown at the FAA National Aviation Experimental Center (NAFEC), Atlantic City, New Jersey. These flights were in support of evaluation of the BCAS system, the development of the system.by the contractor, system demonstrations, azimuth reference signal studies, and JITS compatability studies. Over 200 hours of flight test data was recorded for use in the analysis of the system. While flying a variety of test patterns, the BCAS system was operated in the passive mode, active mode, and a combination of both. Test patterns included two aircraft encounters (BCAS and other) flying level, curved and climb/drive paths. Flights were tracked by the Extended Area Instrument Radar (EAIR), Phototheodolytes, and the Automatic Radar Terminal System (ARTS III). The following paragraphs describe test bed, equipments, procedures and conduct, and test flight patterns.

4.1 FLIGHT TEST ENVIRONMENT - GENERAL

A flight test bed was established at NAFEC to provide as realistic an environment as possible and at the same time satisfy test program requirements. A flight range center staging area about the Millville, New Jersey Vortac was selected. This area was within a triangle formed by the Secondary Surveillance Radar (SSR) sites at NAFEC (ASR-4 and ASR-5), Philadelphia (ASR-7) and Newport, New Jersey (Transportable Beacon Siting Van) (Figure 4-1). This satisfied a primary test requirement that beacon sites be separated in azimuth from the BCAS aircraft by 90° or more. The Philadelphia ASR-7/BI-4 and NAFEC ASR-4/BI-3 are operational FAA terminal radar facilities, while the ASR-5/BI-3 at NAFEC is an experimental site which was operated in conformance with the U.S. National Beacon Standards. These three sites are tied into ARTS III terminal control facilities: Philadelphia ASR-7 with the Philadelphia ARTS III and the NAFEC ASR-4 and ASR-5 with the experimental ARTS III Terminal Automated Test Facility (TATF) located at NAFEC.

FIGURE 4-1. TEST AREA

Data recordings were made at both ARTS III facilities and used for multi-aircraft tracking and environmental investigations (gargle, azimuth reference pulse interference, fruit, etc.) The beacon sitting van is a transportable BI-4 beacon system which was initially set up at Bader Field, New Jersey and later relocated to Newport, New Jersey. The Van's flexibility in selection of PRFs, antenna rotation rates and output power allowed variations in the flight test conditions while still operating within the U.S. National Beacon Standard. These sites were modified to transmit azimuth reference pulses which were required by the BCAS.

A fixed target or "Parrot" was established at Mizpah, New Jersey using a reference transponder. This provided a fixed target at an accurately surveyed location. The BCAS aircraft would then "fly the parrot" while it was being tracked by the Extended Area Instrumentation Radar (EAIR). The raw EAIR data was rotated and translated to the coordinate system of the NAFEC ASR to which the BCAS was locked. Position coordinates of the Mizpah tower, relative to this ASR, were then obtained using a NAFEC geodetic position coordinates program. Values of Time of Arrival (TOA). Differential Azimuth (DAZ) and Own Azimuth (OAZ) were computed from the data and compared to the values recorded from the BCAS. This measurement technique was, in part, necessary because of the predicted accuracies of the BCAS system. The Phototheodolities, EAIR, ARTS III (NAFEC and Philadelphia) and air-to-air Tacan were used to establish the position of test aircraft during testing. The systems were selected for use depending on the purpose of the test and the capabilities of the systems.

Flight activity was coordinated to varying degrees with the following organizations:

- a. Atlantic City Approach Control
- b. New York Air Route Traffic Control Center
- c. Washington Air Route Traffic Control Center
- d. 20th Air Division, USAF ADC (W-107)
- e. Lakehurst NAS and New Jersey ANG (W-107)
- f. Patuxant River NAS (W-386A-B) (W-108)
- g. Philadelphia Approach Control.

Early in the program, briefings were given to the appropriate organizations along with a set of flight patterns and airspace requirements. Direct contact was made with the appropriate personnel approximately seven (7) days prior to a specific flight and final coordination one (1) day before the flight. Any changes in flight patterns, airspace requirements, or departure and arrival times were accomplished by phone prior to the proposed departure time.

4.2 TEST BED CONFIGURATION

The BCAS equipment was installed on a NAFEC Grumman G-159 twin-engine turboprop aircraft. Two such aircraft (N-47, N-48) were used during the testing with the BCAS installed on either N-47 or N-48 except for a special test flight when two BCAS systems were installed, one on each aircraft. Other aircraft used as targets, were a Convair 580 (N49), an Aero Commander AC680-E (N50), and a Douglas DC-6 (N46). The BCAS included special antennas which were installed at top and bottom locations on N47 and N48 as shown in Figure 4-2. The ground facilities (see Figure 4-3 for the facilities at NAFEC) consisted of the following equipments:

- 1. ASR-5/BI-3 NAFEC Experimental system.
- 2. ASR-4/BI-3 FAA Eastern Region Facility, located at NAFEC.
- 3. ASR-7/BI-4 FAA Eastern Region Facility, located at Philadelphia, PA.
- 4. Transportable Beacon Siting Van/BI-4 NAFEC system located at Bader Field, Atlantic City and Newport, New Jersey.
- 5. Extended Area Instrumentation Radar (EAIR) C-Band tracking radar used in the beacon tracking mode for primary position data.
- 6. Phototheodolites a four-station optical tracking complex for accurately determining primary position data.
- 7. Range Control provides real time to all test facilities and aircraft and provides communications to facilities and test aircraft.

FIGURE 4-2. BCAS ANTENNA LOCATIONS ON N47 and N48

FIGURE 4-3. NAFEC BCAS TEST FACILITIES

FIGURE 4-5. EXPERIMENTAL BCAS SYSTEM

Display Controller (Color), MEGADATA Corp. Mag tape recording system, DATA General Corp., Model 6021 Paper tape reader, DATA General Corp., Model 6013 Paper tape punch, DATA General Corp., Model 4012A Printer, EXTEL, Model AH11R Monochrome display controller/keyboard, MEGADATA Corp. Second Monochrome Display, MEGADATA Corp.

The BCAS interfaced with the following systems:

- 1. The aircraft heading synchro was interfaced through the contractor's synchro-to-digital converter to the BCAS computer.
- 2. The barometric pressure system was interfaced with the contractor's Aerosinc encoding altimeter.
- 3. The output of the Time Code Generator was interfaced with the BCAS computer (Figure 4-6).

4.3 FLIGHT TEST PATTERNS

A set of 15 basic flight test patterns were designed to satisfy the test requirements and aircraft capabilities. These patterns are shown in Appendix B and consist of figure eights, rotating double-daisies, curved path encounters, etc. These patterns were used not only for the formal test flights, but also for the contractor's debugging flights.

In the course of the test program, it was necessary to modify the test patterns to accommodate changing test requirements, airspace problems, weather conditions, test bed equipment availability, etc.

4.4 FLIGHT TEST PROCEDURES AND CONDUCT

The following is a brief scenario of the flight test designed to collect BCAS Performance Data, illustrating test procedures and conduct. The flight test or mission involved a series of two aircraft encounters over the Millville VOR. The purpose of the test was to gather encounter performance data of the BCAS system while it was operating in both the passive and active mode.

FIGURE 4-6. BLOCK DIAGRAM OF TIME CODE GENERATING SYSTEM AND TACAN AIR/AIR RANGE MEASUREMENT SYSTEM

Prior to the start of the overall test program, it was established that three test days a week with morning and afternoon flights would be scheduled. The facility and airspace requirements for each mission were reviewed and tentative test periods assigned. This was, in part, necessary because of the long lead time needed in scheduling some facilities and for coordination of airspace.

The mission test plans were reviewed again in detail before the scheduled test period at a preflight meeting.

Items that were discussed included:

- 1. Purpose of test.
- 2. Personnel assignments.
- 3. Communication procedures and frequencies.
- 4. Test pattern(s).
- 5. Time synchronization procedure.
- 6. Test log recording procedures.
- 7. Data recording procedures and requirements.
- 8. Beacon codes to be used.
- 9. Aircraft status.
- 10. Weather forecast.
- 11. BCAS operation.
- 12. Transponder calibration.
- 13. Status of all facilities to be used.
- 14. Data tape collection and processing.
- 15. Tracking system requirements.

Alternate missions and procedures were established in the event of problems in airspace allocation, weather conditions, system failures, etc. This planning proved to be very important because of the weather and the number of people and facilities involved and the limited control that existed over some of the resources. Weather was probably the greatest problem, as it impacted our VFR requirement and the availability of operational facilities and airspace.

For this sample mission, three beacon sites were needed: the Philadelphia ASR-7, the NAFEC ASR-5 and the Newport van. People were assigned to the NAFEC and Newport sites and given logs to record certain parameters (such as power, mode interlace, etc.) and also to monitor the N/S azimuth reference pulse. At Philadelphia, this was done by the Eastern Region technicians and coordinated by phone.

Data was to be recorded at the Philadelphia and NAFEC ARTS III facilities. Air Traffic Controllers from NAFEC were assigned to the terminal control facility to assist in recording the necessary data, coordinate the airspace usage, and to keep a data log. Coordination for use of the facilities on each particular day had been made earlier.

Communications were organized as shown in Figure 4-7. Three radio channels were assigned: VHF# 1 for air-to-ground Air Traffic Control, VHF#2 for air-to-air and air-to-ground for test personnel, UHF# 1 for cockpit to cockpit flight crew coordination. Special phone lines, accessible from the ARTS III (NAFEC), were installed at the Philadelphia ASR-7 site and approach control, and the portable beacon siting van. Phone communications from ARTS III were also available to EAIR, ASR-5, ASR-4, Range Control, CAD and the beacon van.

Time synchronization was to be accomplished in the following manner:

A portable Time Code Generator was synchronized before each flight to real time at the Range Control facility and then transported to the test aircraft. The "on board" Time Code Generator was then synchronized to it. This system reference time was remoted to the TATF and EAIR by Range Control. At the TATF, time was entered into the system via the data entry keyboard from the remote digital time display. A time check was made with the Philadelphia ARTS III via phone and the time difference, if any, was recorded. When all systems were operating, another time check was made.

62

 Phone	Lines
 Radio	Channels

FIGURE 4-7. VOICE COMMUNICATION LINKS

The flight test pattern and procedures were finalized. Pattern #10 of Appendix A, a two aircraft modified or rotating double daisy pattern was used. Encounters 1 through 12 were at the high altitude and encounters 13 through 24 at the lower altitude.

Data acquisition performance was verified using a modified or rotating double daisy which presents 360° of coverage in 12 runs, with encounters 30° apart. This allows acquisition of data for 360° of coverage in a very short time, affording an opportunity for necessary changes prior to the next flight.

In a typical rotating double daisy flight pattern, Aircraft #1 will execute all turns to the left and Aircraft #2 will execute all turns to the right. Aircraft #1 commences flying from 10 NM west of the VORTAC ground station to 10 NM east of the VORTAC station. The inbound flight to the station from the west at a bearing of 090°, is the magnetic course to be flown to reach the station. Passing the station and continuing eastward the VORTAC bearing is 270°. Upon reaching a point 10 NM east of the station, the pilot executes a 195° turn to the left, intercepting and positioning the aircraft inbound on the 075° radial of the station, or a bearing of 255°. After each traverse of the VORTAC station, at the 10 NM point, the pilot again executes a 195° left turn to acquire a bearing to or a radial from the VORTAC station displaced 15° from the previous one. This process continues for a total of 12 transverses of the VORTAC station to complete 360° of coverage.

Aircraft #2 starts the pattern flying from 10 NM east of the VORTAC ground station to 10 NM west of the VORTAC station. While inbound to the station from the east, his bearing is 270°, which is the magnetic course he must fly to reach the station. After passing the station and continuing west bound, his bearing is 090°. Upon reaching a point 10NM west of the station, the pilot executes a 195° right turn, intercepting and positioning the aircraft inbound on the 285° radial of the station, or a bearing of 105°. After each traverse of the station, at the 10 NM point, the pilot again executes a 195° turn to acquire a bearing to or a radial from the VORTAC station displaced 15° from the previous

64

one. This process, as that of aircraft #1, continues for a total of 12 traverses of the VORTAC station to complete 360° of coverage (Table 4-1, Figure 4-8).

Usually this pattern requires both aircraft to maintain a constant airspeed, normally 150Knts, with 400 feet of vertical separation. The exceptions are runs numbered 7 and 19, which are tailchase runs. During a tail-chase, aircraft #2 will increase speed to 230Knts and start the turn-in at a point 14.3 NM from the station instead of 10 NM. Aircraft #1 is designated as the control aircraft and calls each mile mark during each run. This allows Aircraft #2 to adjust speed so as to expect crossovers directly over the VORTAC station.

As shown in Table 4-1, this pattern provides positive and negative intercept angles throughout a 360° azimuth area in 30° increments.

After the preflight meeting, a briefing was held with the flight test pilots and crews and the following items were resolved:

Aircraft/crew manifest Block time/flight duration/fuel load Lead aircraft/#2/#3, taxi and T/O sequence Pattern and position procedure Altitudes/air speeds/distance calls Run sequence list Communications (A/G, A/A, ATC) Transponder settings (front/rear) Tracking requirements Weather Flight plan remarks (formations, waivers, etc.) ATC coordination Special remarks.

Immediately prior to test time the status of all equipment was ascertained and communication links checked out.

When the aircraft were in position to start the pattern, the flight test manager aboard the control plane would "call out" the start of run or encounter. He would then proceed to mark the

# 10.	ENCOUNTER	HDG, Λ/C (1)	HDG. $A/C \parallel 2$	INTROPT ANGLE
	· · · · · · · · · · · · · · · · · · ·			100
	*	090	270	180 .
	2	255	105	150
	3	060	300	120
	4	225	135	90
	5	030	330	60
	.6	195	165	30
	7	360	360	0
	8	165	195	30
	<u>:</u> 9	330	030	60
	10	135	225	90
	11	300	060	120
	12	105	255	150
	13	-270	090	180
	14	075	285	150.
	15.	240	120	120
	16	045	315	90
	17	210	150	60
	18	015	345	30
	19	180	180	0
	20	345	015	-30
	21	150	210	60
	22	315	045	90
	23	120	240	120
	24	285	075	150

.

.

TABLE 4-1. ANGLE ASSIGNMENTS FOR DAISY PATTERN

_

-

A/C #1, LEFT TURNS. ENCOUNTERS 1 THRU 12. ENCOUNTERS 13 THRU 24 OPPOSITE DIRECTION OF ARROWS.

A/C #2, RIGHT TURNS. ENCOUNTERS 1 THRU 12. ENCOUNTERS 13 THRU 24 OPPOSITE DIRECTION OF ARROWS.

FIGURE 4-8. ROTATING OR MODIFIED DOUBLE DAISY PATTERN

crossover time and stop time (data was not to be recorded during turns). He would also indicate to the ground test manager the apparent success or failure of the encounter. The ground test manager would note this on his log and also indicate whether any problems were experienced with the ground equipment. If there was a problem with a run, it was either repeated at the end of the test period or rescheduled for another flight test period.

After the completion of the mission, the data tapes were collected and submitted for reformatting or processing. When the data tape printouts were received, they were spot checked for gross anomalies using a "quick-look" data analysis capability at NAFEC. Post-flight analysis studies were also made at NAFEC to assure the continuing integrity of the test bed and to provide performance status to TSC and the contractor. All data tapes after preliminary screening were provided to Transportation Systems Center (TSC).

5. FLIGHT TEST DATA ANALYSIS

5.1 FLIGHT TEST RESULTS

A summary of measured and derived experimentally BCAS performance values is presented in Table 5-1. Detailed analyses are given in the references to this report.

Parameter	RMS Error	Comments
Directly measured: TOA DAZ OAZ Derived: θ r	.15 µsec .30 degrees .25 degrees .3 degrees 300 feet	Measured against the EAIR precision C-Band tracking radar and a fixed target as other.

TABLE 5-1. EXPERIMENTAL BCAS ACCURACY

The accuracy of the BCAS measurements was assessed by measuring TOA's and DAZ's during a series of flights past the fixed transponder and simultaneously tracking the BCAS aircraft with the EAIR precision radar, as well as with the ARTS III system. The TOA and DAZ values measured by BCAS were then compared with predicted values based on the geometric relationship of the radar, target transponder (determined by survey) and BCAS position (measured by the EAIR radar). The mean values of the differences were attributed to system bias. The variance of the difference between measured and predicted values is considered to be due to random errors of measurement.

The measured values of TOA, DAZ, and OAZ were also used to compute the range and bearing to the target by solving equations 3.2.1 - 3.2.3.

The computed values were compared to the values derived from the EAIR radar measurements. In addition, an extensive set of simulations were run to examine the effect of measurement errors on the computed range and bearing errors in a wider range of configurations than could reasonably be test flown. The sensitivity of range and bearing accuracy to measurement errors does depend in a complex way on the radar and aircraft configuration.

The values in Table 5-1 are representative of configurations with radars about 20 miles from the aircraft, which are some 3 miles apart. There are, however, rather sharply defined configurations when the BCAS and the target aircraft are approximately colinear with the radar in which satisfactory values of range and bearing to the target cannot be computed from the measurements. In such cases, the BCAS must, where possible, select a different SSR for tracking that target or use its on-board interrogator.

Test flights were flown to determine the maximum range at which BCAS could utilize a given SSR. The relevant parameters continuously observed were the quality of radar lock (SLS pulses detected/total number of SLS pulses per scan), number of main beam interrogation detected per scan, and number of P_N pulses detected per scan.

Flight tests were also conducted to establish if either the P_N pulses emitted by the SSR's or the active interrogations by the BCAS were creating any interference with normal ATC surveillance radars. Analysis of the data showed no interference with ATC operation. A summary of measured BCAS characteristics is shown in Table 5-2.

5.2 RANGE - BEARING EVALUATION

The measurements made by the BCAS system - the bearing to at least two ground radars, the differential azimuths to a potential threat, and the TOA's of the transponder signals from the threat are sufficient to calculate the range and bearing to the threat from the BCAS aircraft. Currently these calculations are not being performed in flight, but sufficient data are gathered to

TABLE 5-2. EXPERIMENTAL BCAS CHARACTERISTICS

Parameter	Measured Values
Number of Targets Tracked	9
Number of Radar Locks	3
Range to SSR (max.)	100 nmi
SLS Rec 90dbm	
MB Rec 65dbm	
Range to Target (max.)	
Receiver - 85dbm	8 nmi
Probability of Detection	See Note

NOTE: The data analyzed showed that all targets within the coverage region detected by ARTS were also detected by BCAS. For some aircraft, both ARTS and BCAS formed multiple tracks. However, the derived position of these tracks, when compared, did not agree.

allow them to be performed afterwards. An algorithm was developed to compute range and bearing from the data collected in flight using off-line computers. This program was developed by TSC, and implemented in FORTRAN for the PDP-10 computer. It is identified as NUPAS. A detailed discussion of this algorithm is given in Appendix D.

The new algorithm was tested in a set of simulations to evaluate its performance with perfect measurement data and with measurement data corrupted with known errors. The following was established:

1. When the algorithm operates with perfect input data (i.e., perfectly accurate TOA and azimuth data corresponding to the position of the radars and the aircraft) it produces perfect solutions for the range and bearing of the threat aircraft with respect to our own (BCAS). The principal exceptions, whose causes are understood and discussed in Appendix D, occur either when the intruder aircraft is in a region between one of the surveillance radars and the BCAS aircraft or when the BCAS aircraft is between the intruder and the surveillance radar. The algorithm is an iterative one, but convergence is very fast. In two iterations, the "noise-free" solutions were found to be accurate to within one foot in range and .01 degrees in bearing.

2. The solutions are not unduly sensitive to measurement errors. A limited set of simulations were performed in which known fixed errors were added to the "perfect" input values described above. The errors were of the approximate magnitude of the RMS measurement errors. The precise effects depend very much on the specific configuration of radars and aircraft, so that average values of the error effects are not in themselves meaningful. In general, DAZ measurement errors may affect the answers more than TOA errors. In all but the unfavorable geometries the effects of the simulated input errors (\pm .27µ sec in TOA, \pm .15° in AZ and DAZ, \pm 75 feet in H) resulted in computed positions of others within 200 feet of the nominal location. The rate of convergence was not significantly affected by the presence of the errors.

The algorithm was also applied to calculating separations between the two aircraft involved in the flight tests of October 15, 1976 using the actual data gathered on those flights. The flights were encounters flown in the Milville area using the "rotating daisy" pattern. The BCAS was locking to the NAFEC ASR-4 and Philadelphia terminal radars. Reply data received by the ARTS III system at NAFEC was recorded.

The TOA, OAZ, and DAZ data for three of the flights are shown in Figures 5.2-1-5.2-9.* The slant range between the aircraft and the computed bearing from the BCAS aircraft to the target are plotted in Figures 5.2-10 - 5.2-19. The slant range and bearing derived from the ARTS measurements are plotted in the same figures for comparison. Also, extrapolated data using the two second update interval instead of the normal antenna scan rate of 4 seconds are also presented in Figures 5.2-10a and 5.2-12a for comparison. The smoothed data provide better results as evidenced from the graphs.

^{*}All figures and tables identified by 3-digit numbers are located in Appendix F.

The on-board interrogator controlled by the computer sends out active mode interrogation sequences consisting of 12 top antenna and 12 bottom antenna interrogations with a 30 microsecond switch-over time between these interrogations.

The data from the active interrogator were not used in calculating the threat range and bearing by the NUPAS algorithm. However, since the replies to the on-board interrogator give a good measure of slant range to the target, the slant range derived from them is also shown on the plots for comparison with the other values obtained for range.

On the plots of separation distance, the values derived from the active interrogations are indicated by circles. They are shown for every value of time at which an active interrogation burst received a target report.

The values of slant range and bearing computed from the ARTS data are shown at the time of the ASR-4 main beam passage past the BCAS aircraft every time that valid target reports were received from both the BCAS and the target aircraft during one antenna rotation period. The values are indicated as short horizontal lines crossing vertical lines which represent the (approximate) 90% confidence intervals for these quantities. The derivation and significance of these error bars are discussed in Appendix G.

The slant range and bearing to the target computed by NUPAS, i.e., the BCAS computed positions of the threat aircraft, are shown in the figures as small x's or inverted v's. The inverted v's are used when the configuration of the aircraft relative to the radars is such that the available pair of radars does not meet the criteria of a "good" radar pair as currently defined within NUPAS. The x's are used otherwise. It may be observed that the criteria for "good" radar pairs are evidently more stringent than they need be, since the range and bearing calculations do not appear to be noticeably worse when the radar pair does not satisfy them.

The range and bearing to other are computed for every instant of time for which a target report is received - i.e., at the time of main beam passage of either of the locked radars. No filtering,

73

smoothing or extrapolation of any kind is performed on the measured values except for Figures 5.2-10a to 5.2-12a of the differential azimuth and TOA. Each calculation is based on the values of own azimuth, differential azimuth, and TOA just obtained for one radar at the instant for which range and separation are computed and on the most recent values of these parameters obtained for the other locked radar. The values from the other radar are those of an observation at some instant in the past, descriptive of the aircraft positions at the earlier instant. Values older than 10 seconds were never used. In general, unless there was a radar rotation period during which no target report was obtained by the BCAS system for the target being tracked, the calculation was based on a pair of target reports separated in time by between 0 and some 4 seconds (one radar rotation period).

The relation between the aircraft configurations, the BCAS system measurements, and the calculations based upon them is extremely complex. There is no simple way to express the effect of this time difference in the observations. It may be noted in the figures that there are instances when two range and bearing solutions are given close together in time. Then the earlier is based upon the measurements based on radar A at that instant and the measurements based on radar B made almost a full antenna rotation period previously. The latter is based upon the newly updated radar B measurements and the radar A measurements made at the earlier instant - i.e., upon a set of measurements made close together in time.

It may be observed that the values at the second instant tend to be better - i.e., closer to the presumably correct value that may be deduced by considering the general trend of the data and the ARTS and active radar measurements. On the other hand, the errors due to the time interval between observations are never very large.

Computed range and bearing values for good geometries are on average 300 feet rms and .3 degrees rms respectfully. Some improvements in these values are expected from better data smoothing and extrapolation. It may be observed that the passive BCAS could not

74

follow the threat aircraft at the time of the closest approach during the encounters flown, but that the ARTS system could not do so either. The active system could track threat range continuously.

Prior to November 19, 1976 there was an error in the BCAS own azimuth computation program which resulted in large transient oscillations in recorded "own azimuth" whenever radar lock was newly acquired. This has now been corrected. Unfortunately the effects of this error tend to appear frequently in the data for flights involving the "rotating daisy" flight patterns. The aircraft tend to bank sharply and lose radar lock at the ends of the petals. Radar reacquisition occurs near the beginning of the encounter run, and the transient in the azimuth value does not die out for several minutes. The nature of the transient is seen in Figure 5.5-1 to 8 and the effects on the computed range and bearing in Figures 5.2-12, 5.2-15, 5.2-18 and 5.2-19.

5.3 TOA MEASUREMENT ACCURACY

The accuracy of the BCAS TOA measurements was assessed by comparing the TOA's measured during a series of flights past the fixed transponder in the Mizpah fire tower with values of the TOA's predicted from the relative positions of the BCAS aircraft and the fire tower. These positions were simultaneously obtained by the NAFEC ARTS III system and the EAIR tracking radar system. The ARTS system measured both the aircraft and the tower transponder positions once every rotation period. It may be noted that the BCAS system measured the TOA of the transponder signals that were identically the same as those that the ARTS III system used to establish the transponder location. The EAIR system tracked the aircraft only. The position of the tower used in predicting the TOA's (and the differential azimuths of Sections 5.2.3) was the surveyed position. The results of the tests are given in Table 5.3-1 (Appendix F, supporting data) and Figures 5.3-1 - 5.3-8.

RUN		ARTS III			EAIR	
Number	Number of Samples	Sample Mean (Sec.)	Sample Std. Dev.	Number of Samples	Sample Mean (Sec.)	Sample Std. Dev.
2	13	390	.865	-	-	-
3	62	016	1.336	78	.034	.121
4	26	225	.926	33	.418	.084
5	69	.649	1.676	88	.295	.098
6	38	.352	.480	43	.393	.137
7	56	378	.415	75	.308	.093
8	17	320	1.012	35	.340	.116
9	21	106	.772	59	.274	.088
10	10	.934	2.570	2.4	.382	.071
11	69	- .397	.282	83	.325	.105
TOTAL	381	·	1.154	518	.341	.113

.

TABLE 5-3. DIFFERENCES BETWEEN TOA'S MEASURED BY BCAS AND PREDICTED FROM GROUND SYSTEM MEASUREMENTS

There is an average difference of 0.341 microseconds between the measured TOA's and the TOA's predicted on the basis of EAIR measurements, but the RMS variation (i.e., the standard deviation) of this observed difference is only 0.113 microseconds. Since the EAIR and the BCAS systems are totally independent, this implies that there is some systematic bias in arriving at the value of the TOA in at least one of the systems, but that the random variation in the measurements is quite small. It may be noted that within the BCAS system, TOA is quantized to intervals of 0.145 microseconds. This quantization by itself introduces a random RMS error of about 0.05 microseconds. Since there is also some random variation in the EAIR measurements which contributes to the random element in the calculated TOA differences, it may be concluded that the RMS value of the random variation in the measured TOA's due to factors other than quantization noise is less than 0.1 microseconds.

Comparing the measured TOA's with the TOA's computed from the ARTS III measurement, one does not observe any statistically significant mean difference between them (i.e., no system bias). However, the variance of the difference is quite large. The standard deviation (i.e., the RMS value of the random component) of the difference is seen to be 1.154 microseconds. Since no random fluctuation was found in the BCAS - measured TOA's when compared to the TOA's computed on the basis of the independent EAIR system measurements, it must be concluded that this variation is in the ARTS measurements alone.

The measurements analyzed here were made for TOA's of signals from a stationary transponder to a moving BCAS aircraft. TOA's from a moving target to a moving BCAS system are plotted in Figures 5.2-1, 5.2-4 and 5.2-7. Quantitative measures of accuracy have not been computed, since the EAIR system cannot be used to track two aircraft simultaneously and since the values derived from ARTS measurements themselves appear to be significantly less accurate than the BCAS measurements. However, inspection of the figures indicates that the accuracies are comparable to those for the stationary target.

77

The measurements taken initially with a fixed target were repeated on January 6, 7, 1977 when all improvements had been incorporated in the BCAS software. These results are shown in Table 5.3-1 and Figures 5.3-9 - 5.3-18 and are considered as representative for assessing TOA measurement accuracy.

TABLE 5-4.	TOA	DIFFEREN	NCES II	N MI	CROS	SECON	IDS	BEI	WEI	EN I	BCAS
MEASUREMENTS	5 AND	VALUES	PREDI	CTED	ON	THE	BAS	SIS	OF	EAI	R
MEASUREMENTS	5										

Run #	N	m	s ²
Outbound			
1	53	.238	.042
5	58	.220	.024
9	59	.240	.027
(1,5,9)	150	.233	.030
Inbound			
2	58	.169	.018
6	55	.197	.012
10	63	.209	.017
(2,6,10)	176	.192	.016

N = number of samples in set

m = sample mean of data in set

 s^2 = sample variance of data in set

5.4 DIFFERENTIAL AZIMUTH ACCURACY

The accuracy of the BCAS measurements of differential azimuth was evaluated on the basis of the data gathered on the same test flights past the Mizpah fire tower on November 9, 1976 as were used for evaluating TOA measurement accuracy. The results of the test are presented in Table 5-5 and Figures 5.4-1 - 5.4-8. It is seen that the mean difference between the BCAS computed

RUN		ARTS III			EAIR		
Number	Number of Samples	Sample Mean (degrees)	Sample Std. Dev.	Number of Samples	Sample Mean (degrees)	Sample Std. Dev.	
2	13	.019	.275	-	-	-	
3	62	212	.398	78	213	.403	
4	26	210	.471	33	098	.254	
5	69	061	.293	88	- . 053	.354	
6	38	206	.391	43	092	.223	
7	56	-:044	.428	75	064	.374	
8	17	.051	.433	35	.006	.387	
9	21	.157	.547	59	.214	.492	
10	10	145	.462	24	.005	.506	
11	69	209	.356	83	152	.193	
OTAL	381	117	.403	518	0676	.362	

TABLE 5-5. DIFFERENCES BETWEEN DIFFERENTIAL AZIMUTH MEASURED BY BCAS AND PREDICTED FROM GROUND SYSTEM MEASUREMENTS

.

differential azimuth and the DAZ calculated from EAIR data is 0.07 degrees, and the sample standard deviation is 0.36 degrees. The mean difference between BCAS and ARTS values is 0.12 degrees, with a standard deviation of 0.40 degrees. See Table 5-6 for supporting data.

TABLE 5-6. DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS

Run #	N	m	s ²
Outbound			
1	53	061	.157
5	58	125	.077
9	59	065	.129
(1,5,9)	170	084	.119
Inbound			
2	58	107	.111
6	55	101	.079
10	63	168	.114
(2,6,10)	176	127	.102

JTIDS Off

N = number of samples in set
m = sample mean
s²= sample variance

Analysis performed at TSC showed that DAZ computations could be in error up to 0.87 degrees. In performing the computations, the BCAS software utilizes only the most significant half of the double length interrogation time. Thus up to 9.5 ms may be truncated from the computations, which for the ASR-4 (scan period: 3.934 seconds) radar would result in such stated errors. Quantization noise of this magnitude introduces random error with an RMS value of about .3 degrees.

Since the differential azimuth is determined by calculating the difference between the centroids of two groups of transponder replies to ATCRBS interrogator pulses that are emitted approximately every 0.1 degree of antenna rotation, it is seen that the BCAS accuracy achieved is close to the theoretic optimum. It may be noted that ARTS III RMS error in measuring differential azimuth is about .4 degrees (See Appendix E.)

The calculated mean and RMS differences given in Table 5-5 apply to the case of a moving BCAS system measuring its differential azimuth with respect to a stationary target.

Comparison with Figures 5.2-3, 5.2-6 and 5.2-9 shows that essentially the same results are obtained when both the BCAS system and the target are moving.

DAZ measurements were repeated with all software modifications incorporated and are shown in Table 5-6 and Figures 5.2-9 - 5.2-18.

5.5 OWN AZIMUTH

The BCAS software used to smooth the own azimuth measurements contained an error which was not found and corrected until November 19, 1976. The error had several effects. The filtered (smoothed) value of own azimuth, if it converged at all, contained a large transient (a damped oscillation) which started at the time of radar lock and decayed over a period of several minutes, reaching peaks of more than 20 degrees. (See Figures 5.5-1-- 5.5-8.)

Even after the transient had decayed, there remained a constant offset of some 3 degrees between the true and the calculated values of own azimuth.

The software error giving rise to this problem has now been corrected. Figures 5.5-9 and 5.5-10 show comparisons of own azimuth values computed by BCAS (with the corrected program) and derived from EAIR measurements. It is seen that there is essentially no error left in the own azimuth computations in the steady state. It remains to be verified that the transient error following upon radar lock-up has also been removed.

5.6 RECEIVER SENSITIVITY MEASUREMENTS

In order to determine the maximum effective range at which SLS pulses and main beam pulses can be received without breaking the radar lock, the following parameters were measured.

- 1. <u>SLS hits x 100</u> = quality of radar lock in % Total No. of SLS = quality of radar lock in %
- 2. Main beam hits
- 3. Number of uncorrelated radars
- 4. Fruit number/scan
- 5. Radar Lock Details: coastings, firm lock, etc.
- 6. Azimuth measurement.

Three independent flight tests were conducted under the following conditions:

<u>Date</u>	Altitude	Rec. Sensitivity	Range of Detection (n.mi.)
5/6/76	13.0K	-90 (SLS)	120nm outbound
-, -, -,		-60 to -70 (MB)	125nm inbound
12/8/76	18.8K	-90 (SLS)	100 nm (typical)
		-65 (MB)	
12/27/76	21.OK	-90 (SLS)	127 nm outbound
		-70 (MB)	118 nm (typical)
		-65 (MB)	100 nm 80% count
			good lock

Considering the overall performance, it appears that optimum receiver sensitivity for the BCAS would be -90dbm for the SLS pulses and -65dbm for the main beam pulses.

A convenient range of operation for the BCAS system would be from 10 to 100 n miles, based on the receiver sensitivity settings and 150 watts peak power level at the ground interrogation site. The SLS and North pulses radiated on the onmi pattern can be detected up to distances in excess of 150 n miles. However, the main beam interrogation pulses radiated with 21 db antenna gain are detected typically up to 120 n miles for the -65 dbm receiver threshold.

5.7 NORTH PULSE KIT INTERFERENCE

Tests were performed to assess the effects of the presence of the north pulse kit on the operation of the ARTS III radar system. The nature of the test was to operate the ASR-4 system at NAFEC for a period of 112 minutes, alternatively turning the north pulse kit on and off at one minute intervals.

Statistics on ARTS III performance were gathered during each such period. The quantities which were considered to be of most interest and which were used in the subsequent analyses were the number of replies per target per scan (number of hits) and the run length of the sequence of transponder replies receiver by the ARTS III radar.

The averages and standard deviations of both these quantities were computed in each interval. Adjacent intervals were paired, and comparisons were made within each pair between the interval with the bits on and off. It was found that the average number of hits was greater with the bit off in 35 of 56 cases. Also the average run length was greater in 35 of 56 cases (not, in general, the same cases). These results are significant at the 2.5% level, i.e, there is no more than 2.5% probability that they are due to chance alone. The size of the effect however, is small. The observed average decrease in both the run length and the number of hits was on the order of 0.1, which may be compared to run lengths and average numbers of hits on the order of 18, with standard deviations on the order of 3.

5.8 HIGH RATE OF ACTIVE INTERROGATION

Tests similar to the north pulse interference tests were conducted to assess the effects of active interrogation in aircraft upon ARTS performance. The BCAS interrogator operating at 300 interrogations/second was alternately turned on and off at 1 minute intervals. ARTS performance measures were compared in 18 pairs of adjacent intervals. The average number of hits with the interrogator on decreased in 14 of 18 cases. The average target run length decreased in 12 of 18 cases. These results are significant at the 2.5% and the 12.5% level, respectively. Again, the observed differences themselves were small, amounting to 0.36 in the average number of hits.

5.9 X & D₁ PULSE ANALYSIS

5.9.1 Background

Co-altitude threats in the semi-active Beacon Collision Avoidance System are handled by means of "tie-breaker logic". One subsystem of the BCAS equipment is a standard ATCRBS transponder which emits X and D_1 pulses within the Mode C and an X pulse within the Mode 3/A reply message upon command from the onboard BCAS central processor. These pulses (X and D_1) are currently not designed for use in ATCRBS and have been authorized for use for BCAS testing. The pulses shall determine the direction of a potential maneuver of the BCAS equipped aircraft. The presence of these pulses in Mode 3/A and Mode C replies indicates the direction of maneuvers as follows:

Х _А	хс	^{D1} C	
0	0	0	no threat
0	0	1	threat-fly straight and level
0	1	0	dive
1	1	1	climb
1	0	0	turn left
1	0	1	turn right

х _А	х _с	D ₁ C	
1	1	0	turn left and change altitude
1	1	1	turn right and change altitude.

5.9.2 Discussion

A reply analysis routine was implemented to process ARTS III Data Extraction Tapes for Mode C containing X and D_1 pulses and Mode 3/A replies containing the X pulse. Although operational ATCRBS transponders do not use these pulses, the frequency of their erroneous use due to possible garbling, reply interleave, fruit, and the like was deemed worthy of investigation. The program was implemented to accumulate pertinent Mode C and Mode 3/A X and D_1 pulse statistics, with the statistics being grouped in terms of ungarbled and garbled replies.

5.9.3 Analysis

Table 5-7 depicts four 10-second intervals of reply data. These data were collected during the March 24, 1976 ASR-5 North/ South Pulse Kit Installation Test.

The summary report (see Table 5-7) lists for subsystem 1 or 2 (in this case, subsystem 1 is the ASR-5), the total number of replies received by ARTS III from the ASR-5 during the ten-second interval, Mode C statistics including the number of replies processed and the percentages of processed for each of the four combinations of X and D_1 pulses, and Mode 3/A statistics comprising the number of replies of this type processed. In this instance, since D_1 is permissible for beacon code only, the two corresponding percentages for the X pulses are depicted.

Table 5-7 shows the four combinations of the North/South Pulse and the Defruiter (DEF) as follows:

RUN #1	RUN #2	RUN #3	RUN #4			
2784 Total Number of Replies	2472	2350	2927			
Mode C (774 Replies)	Mode C (723 Replies)	Mode C (774 Replies)	Mode C (960 Replies			
Ungarbled Replies D1 X Percent 0 0 99.483 0 1 .129 1 0 .129 1 1 .258 Garbled Replies (0)	Ungarbled Replies D1 X Percent 0 0 100.000 0 0 .000 1 0 .000 1 1 .000 Garbled Replies (0)	Ungarbled Replies D1 X Percent 0 0 97.028 0 1 .000 1 0 2.972 1 1 .000 Garbled Replies (0	Ungarbled Replies D1 X Percent 0 0 95.417 0 1 .000 1 0 4.583 1 1 .000) Garbled Replies (0)			
Mode 3/A (2010 Replies) Mode 3/A (1749 Replies) Mode 3/A (1576 Replies) Mode 3/A (1967 Replies)						
Ungarbled Replies X Percent 0 99.602 1 .398	Ungarbled Replies X Percent 0 99.886 1 .114	Ungarbled Replies X Percent 0 99.937 1 .063	Ungarbled Replies X PERCENT 0 100.000 1 .000			
Garbled Replies (0)	Garbled Replies (0)	Garbled Replies (O) Garbled Replies (0)			

,

<u>RUN</u> #	KIT	DEF	TMIN	TMAX
1	OFF	ON	11/17/50	11/18/00
2	ON	ON	11/18/10	11/18/20
3	OFF	OFF	11/23/00	11/23/10
4	ON	OFF	11/23/40	11/23/50

Runs 1 and 2 (i.e., with the defruiter ON) depict data that is representative of the ATCRBS environment as ATRS III sees it. As shown in these tables, percentages of D_1 and X pulses for ungarbled Mode C replies are 0.4% and 0%, respectively, with percentages of X pulses for ungarbled Mode 3/A being 4.0% and 0.1%, respectively.

Runs 3 and 4 (i.e., with the defruiter OFF) contain higher percentages of D_1 and X pulses usage then the first two tables. These data, perhaps may be more representative of the ATCRBS environment as the BCAS system sees it. Corresponding percentages for Mode C and Mode 3/A for these tables are 3.0% and 4.6%, and 0.1% and 0, respectively.

Table 5-8 depicts data that were collected during the May 12, . ASR-7 North/South Pulse Kit Installation Test. Similarly, each run is a 10-second interval representing the four combinations of the Kit and the Defruiter states as follows:

<u>RUN #</u>	KIT	DEF.	TMIN	TMAX
5	ON	ON	10/16/00	10/16/10
6	OFF	ON	10/20/00	10/20/10
7	OFF	OFF	10/23/00	10/23/10
8	ON	OFF	10/25/00	10/25/10

Unlike the ASR-5 radar, the ASR-7 radar did receive garbled replies for the four combinations of tests comprising both Mode C and Mode 3/A replies. The associated statistics for X and D_1 pulses usage are substantially higher for the ASR-7 than they were for the ASR-5. This phenomena may be attributable to multipath associated with the ASR-7 site.

TABLE 5-8. SUBSYSTEM 2 (ASR-7)

RUN #5	RUN #6	RIIN #7	DIIN # 9
2180 Total Number of Replies	2304	10411	10840
Mode C	Mode C	Mode C	Mode C
(615 Replies)	(645 Replies)	(3388 Replies)	(3652 Replies)
Ungarbled Replies	Ungarbled Replies	Ungarbled Replies	Ungarbled Replies
(595)	(618)	(2713)	(2823)
D1 X Percent	D1 X Percent	D1 X Percent	D1 X Percent
0 0 98.824	0 0 100.000	0 0 83.856	0 0 85.689
0 1 .168	0 1 .000	0 1 1.696	0 1 1.452
1 0 1.008	1 0 .000	1 0 13.085	1 0 11.761
1 1 .000	1 1 .000	1 1 1.364	1 1 1.098
Garbled Replies	Garbled Replies	Garbled Replies	Garbled Replies
(20)	(27)	(675)	(829)
D1 X Percent	D1 X Percent	D1 X Percent	D1 X Percent
0 0 95.000	1 0 88.889	0 0 66.963	0 0 70.929
0 0 .000	0 0 11.111	0 1 7.852	0 1 9.650
1 0 5.000	1 0 .000	1 0 17.037	1 0 14.234
1 1 .000	1 1 .000	1 1 8.148	1 1 5.187
Mode 3/A (1565	Mode 3/A (1659	Mode 3/A 7023	Mode 3/A (7188
Replies)	Replies)	Replies)	Replies)
Ungarbled Replies	Ungarbled Replies	Ungarbled Replies	Ungarbled Replies
(1495)	(1599)	(5573)	(5571)
X Percent	X Percent	X Percent	X Percent
0 99.599	0 99.875	0 97.416	0. 86.841
1 .401	1 .125	1 2.584	1 3.159
Garbled Replies	Garbled Replies	Garbled Replies	Garbled Replies
(70)	(60)	(1450)	(1617)
X Percent	X Percent	X Percent	X Percent
0 88.571	0 75.000	0.84.483	0.86.889
1 11.429	1 25.000	1 15.517	1.13.111

88

5.9.4 Summary and Conclusions

Reply data from an operational ARTS III site were processed to calculate X and D_1 pulse utility. The X and D pulses were detected successfully except when two targets were close together. In such cases, ARTS III may associate the X and D bits with the replies from the wrong targets.

5.10 F2 TRACKING

5.10.1 Self-Garble Interference

When the BCAS aircraft is within the interrogating beam of an ATCRBS radar, the presence of a reply from its own on-board transponder will prevent BCAS receiver from properly receiving any transponder replies from other aircraft that might arrive at the BCAS before its own transponder has ceased transmitting. This condition is referred to as self-garble interference.

The BCAS receiver has been designed to receive replies partly obscured by self-garble interference. The technique employed is called F2 tracking. The principle of F2 tracking is the following: The OWN response may garble the first part of OTHER's received reply, but the later part of the reply will arrive clear. The reply can not be received in the ordinary manner because (a) the initial framing pulse (F1) is obscured by the self-garble and (b) because some of the code bits (pulses) may be obscured, so that the identity or altitude can not be properly decoded.

When the receiver is in the F2 tracking mode, the assumption is made that the beginning of a transponder reply from OTHER may have arrived at the BCAS receiver during the period that the OWN transponder was replying. Any pulse that arrives immediately after the conclusion of the own reply then is assumed to be the concluding part of such a reply. In particular, any pulse arriving during the 20.3 microseconds following the conclusion of the reply from the OWN transponder is assumed to be an F2 bracket pulse

concluding a reply whose first part, and specifically the F1 bracket pulse, was obscured. Therefore, an artificial F1 pulse is inserted into the detected bit stream 20.3 microseconds preceding the assumed F2 pulse. The subsequent reply detecting logic then detects two pulses at the proper bracket spacing and treats the combination of the presumed F2 pulse, the artificial F1 pulse, and any intervening pulses that may have been detected as a reply. The TOA of this "reply" is determined by the timing of the "F1" pulse. Since the code bits of such an artificially created reply are not valid, the logic tags this as an F2-tracking reply. (The tag appears in the reply listing (Figure 5-1) as a one in the first digit of the 6-digit group showing the transponder code). If in fact an actual reply is partially obscured by self-garble, but a number of the code pulses, as well as the F2 bracket pulse, are received in the clear, an artificial F1 pulse will be created for every such pulse received. The result will be that a whole burst of partially overlapping replies will be decoded, all tagged as artifical. If the self-garble condition persists for a number of radar interrogations, there may be enough of these artificial replies to result in target declarations. Targets so declared will have the identity and altitude codes indicated as garbled.

A group of replies including replies obtained by F2 tracking will be formed into a target report with a valid identity code only if there are at least four mode A (identity) replies received in the clear. Target reports containing replies generated by F2 tracking are associated with target tracks (record correlation) only if this condition is met.

This, in general, will happen if part of the burst of replies from another aircraft are subject to self-garble and part are received in the clear. The artificially restored self-garbled replies included in the target report insure that the full burst of replies from the target aircraft is considered in determining the target centroid - i.e. in establishing the correct differential azimuth. The extraneous replies and targets that may be created by falsely assuming some code pulses to be F2 pulses are rejected

INTERROGATION TIME: 30701+729+197 MeDE: C · DAZ: +45L -.870 102010 -.290 106130 77.720 005774 INTERROGATION TIME: 307017354.568 MBDE: A DAZ: +21L . 50.025 000200 INTERREGATION TIME: 307019980.084 MODE: A DAZI •03R +.435 100311 INTERROGATION TIME: 307022605+453 MODE: C +27R CAZ: -.870 102010 INTERROSATION TIME: 307027856.338 MODE: A CAZ: •758 -.87C 100211 -.29C 100211 INTERREGATION TIME: 307030481.709 MODE: C DAZI •99R 14.790 100000 INTERROGATION TIME: 307033107.078 MaDE: A DAZ: 1.23R 10.440 120000 11.890 100004 13.340 100404 14.790 100406 INTERREGATION TIME: 307035732.594 VTERRCGATION TIME: 307035732.594 MODE: A DAZ: 1.47R +.580 100311 1.740 104200 10.440 122100 11.890 110024 13.340 105404 14.790 100456 INTERROGATION TIME: 307038357.963 MODE: 0 DAZ: 1.71R 14.790 100000 INTERROGATION TIME: 307040983.478 NTERREGATION TIME; 307040983.478 MODE: A. DAZ: 1.958 +.580 100211 1.740 124200 6.090 130322 10.295 122102 11.745 110224 13.195 105405 14.645 100556 INTERROGATION TIME: 307043608.848 NTERROGATION TIME: 307043608+848 MODE: A DAZ: 2+19R ++580 100311 1+740 120200 6+090 130002 10+440 122102 11+590 110224 13+340 105405 14.645 100556 INTERROGATION TIME: 307046234.363 MeDE: C DAZ: 2.43R 14.645 100000 INTERROGATION TIME: 307048859.588 MODE: A DAZ: 2.67R 6.235 130000 10.440 122002 11.890 100224 13.340 101405 14.790 100516 **•8,990 014000** 75.980 007200 INTERROGATION TIME: 307051485+103 MeDE: A DAZ: 2.91R 14.645 100406 10.440 120000 11.745 100004 13.195 100404 INTERROGATION TIME: 307054110+473 . MODE: C CAZ: 3.15R +.435 100000 INTERROGATION TIME: 307056735.988 DAZ: 3.39R 13.195 100404 14.645 100406 MODE: A +.435 100211 10.295 120000 11.745 100004 INTERROGATION TIME: 307059361+213 MODE: A DAZ: 3.63R -3.915 012304 1.885 026621 6.235 034033 7.540 025344 10.440 026526 14.790 000777 INTERROGATION TIME: 307061986.728 MODE: C DAZ: 3.87R 14.790 004220 INTERROGATION TIME: 307064611.953 HODE: A DAZ: 4-12R 7.685 024374 9.135 033445 12.035 011666 14.935 000777 INTERREGATION TIME: 307067237.469 MODE: A DAZ: 4+36R 7.540 024374 8.990 033445 11.890 011666 14.790 000777 INTERROGATION TIME: 307069862.838 MODE: C DAZ: 4+60R 14.935 004220 INTERREGATION TIME: 307072488.353 MODE: A DAZ: 4.84R 7.540 024374 8.990 033445 11.690 011666 14.790 000777 INTERROGATION TIME: 307075113.723 MODE: A DAZ: 5+08R

LCAS GUICK LOOK PROGRAM TOA/DAZ REPLY LISTING FOR RADAR & SCAN 72 -

DATE 23 NEV 1976 PAGE 0366

by later screening steps in the BCAS logic, so that no false alarms will be created.

5.10.2 Example of F2 Tracking

The operation of the F2 tracking algorithm was verified by examining reply level BCAS data collected on November 9, 1976. The flight test consisted of flying radial patterns near the Mispah fire tower. The transponder in the fire tower was replying with the identity code 0777. For this code, the train of pulses is shown in Figure 5-2.

> Pulse Width 0.45µ's Pulse Spacing 1.45µ's

FIGURE 5-2. CODE 0777 MODE 3/A REPLY

A timing diagram of self-garbled interference and F2 tracking is shown in Figure 5-3. The sampling of the replies received and the resulting TOA histograms and target reports generated is shown in Figures 5-4 to 5-6. A detailed bit-by-bit reconstruction of the replies registered to the mode 3/A interrogation at a differential azimuth of 1.95° right is shown in Figure 5-5.

FIGURE 5-3. TIMING DIAGRAM OF SELF-GARBLE INTERFERENCE AND F2 TRACKING

DATE 23 NOV 1976 LEAS QUICK LPOK PROGRAM Radar/Target Listing TIME DAZ TAL LTRN GTRN TARGETS FER SCAN 72 RID 5 TID BCD NRP TÜA ••• --- ---- ----... 12:31:48.5 1 **** 8 10-830US 1.97 12:31:48-5 2 **** 10 12+280US 2 **** 10 12*28005 2*52 ***** 12:31:48*5 3 **** 7 13.71005 1*83 ****** 12:31:48*5 4 C777 15 15.18005 2*55 5CCC 20 2 12:31:48*5 HIT 1* BCT3C78*7*02*005 ACAACAAC 5CP3*5505 SCN C PRP252605 HIT 18 BCT308646233*805 ACAACAAC SCP **7025 SCN C PRP322205 HIT 26 BCT31C116150*305 AACAACAAC SCP23**7*5 SCN C PRP182305 1904 2318 2887 2257 1864 1924 3159 2.52

.

PAGE

0371

.

ASR4 - 417 22 307310957074+605 AACAACAA SCP 3-9375 SCN 73 PRP262505 SL512687 120+ 599 NIN 145 BAL 10400FT AWN272+57 ACH286+61 RID 3

FIGURE 5-4. TARGET REPORTS

•

.

	LCAS QUI	CK L88	PROGR	1AM					
Identit	y teri	DIFFERI	ENTIAL	AZIMU	(HS				
Altitud	le .000	5.08R	5+56R	5.8CR	7.002	7.72R			
Codes	-145	7+24R							
ſ	1.740	1.478	1.958	2.198					
~4	1.885	3+63R							
	4.000	1.950	3-100						
R ¹	6.235	2+67R	3.63R						
•									
D ₁	7.540.	3.638	4 • 36R	4+84R					
	******	41154							
B ₂	8.990	4.36R	4 • 84R1	0.60R					
2	9,135	4+15K							
	10.150	5.32R							
⁰ 2	10.295	1+95R	3.398	9 4 9 9	a cin				
,-	10.440	1.534	1	£•1ан	C+0/4	5+31H	3+03K		
р	11.745	1.95R	2+91R	3.39R					
^D 4 [·]	11.890	1+23R	1-47R	2-19R	2+67R	4+36R	4+84R		
•	12.180	444GN							
	12.325							•	
	12.470								
	12.760	-69L							
	12.905								•
_ ••	13.195	1•95R	2+91R	3.398					
U ₄	13.340	1-23R	1+47R	2.19R	2+67R				
1.4	13.485								
	13.775								
	13.920								
	14.065	-69L							
	14.355								
F	14.500 1	5.35L	9.(00	3					
^F 2	14.790	199R	2•19R - 1•23R	C+43R 1+47R	2•71R 1•71R	3+37R	3+63R	3.87R 4.3	6R 4.848
-	14,935	4+12R	4+60R		••••	••••			•
	15.080 1	3•43L							
	15.370								
	15.515	•69L							
	15+660								

DATE 23 NOV 1976 PAGE 0368 For Radar & Scan 72

.

.

95

•
95	500T	S O 1	702	\$24	ZOTT	Z 0	IZZI	20	1200	00	707T	1	:1	pəposəp	əpol
95 X X X X X X	1002 2b1 2b1 2b4 2b5 2b5 2b7 2b7 2d 2d 2d	S O I X X X X X	1024 Sb1 Sb1 S5 D7 B4 D7 B7 D7 B1 D7 B1 D7 V4 V4	x x x x	7103 851 84 07 85 05 87 07 87 87 87 87 87 87	x x x x x	1221 Sbl 251 251 25 25 25 25 25 25 25 25 25 25 25 25 25	zo x x x x	1300 I300 E5 E5 E5 E5 E5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7	00 x x	1202 291 291	X X X X X X	Received in clear	qecoqeq 0 X X X X X X X X 0 0 0 X 0	Coqe SbI B5 D7 B7 D7 B7 D7 B7 D1 B7 D1 B7 V7
x C	CI VI EI EI	х Э	A2 A2 A1 C1 F1 C1	x c	C4 V3 C5 V1 C1 E1	х Э	А4 А4 А2 С4 С3 С3 Е1 Е1	x C	В 1 В 1 В 1 В 1 В 1 В 1 В 1 С 4 С 4 С 4 С 4 С 4 С 4 С 4 С 4 С 4 С 4	x c	В4 В5 В5 В5 В7 В7 В7 С4 V4 С5 V4 С5 V4 С5 V1 С5 В1 С1 Е1	X	Obscured by own reply	x 0 X X	A2 A1 C2 F1 F1
		3u	таскі Ізе)	ין bn ד2 ב	gnie sioil	u bə arti	ates decod	sə Dib	ilqəA ni D)			səsIu ^q bəvisəsA		sponder 7 of	Repl)

FIGURE 5-6. REPLIES DECODED BY F2 TRACKING AT DAZ = 2.19°R (cf. FIG. 5-1). C IS ARTIFICIAL PULSE

The TOA of the replies from the test transponder is 14.79 microseconds. Thus only the last 14.79 microseconds of the reply i.e., the last 10 pulse positions are received in the clear. (See Figure 5-6.) For every bit received in the 20.3 microsecond interval following the OWN reply, an artificial Fl pulse is generated. The code bits corresponding to every such bracket are decoded (see Figure 5-1). The resulting replies are included in the TOA histogram (Figure 5-5) and target reports are generated according to the usual rules (Figure 5-3). Only the proper target report is found not garbled and associated with a global track. Thus proper operation is demonstrated.

5.11 FRUIT MEASUREMENTS

The Fruit Susceptability program was exercised to process BCAS type 3 messages (i.e., beacon reply data) for runs 1 through 12 of JTIDS testing. Six of these runs, that is when the JTIDS system was OFF, are germane to this report. The results of the data reduction program for these runs are tabulated in Table 5-9.

For the purpose of this discussion, fruit replies are defined as those transponder replies received by BCAS which the software was unable to correlate to target reports.

This reply/target report correlation was performed via the mechanism of histogram tables (see Figure 5-3), requiring the receipt of a minimum of six replies to fall into no more than three contiguous TOA bins, with each TOA bin having a granualrity of 0.145μ seconds.

As shown in Table 5-9, the data depicted are for one radar, the ASR-5, and are averages on a per scan basis. The fruit rate varies between 51.4% and 64.7%. The total number of replies, again on a per scan basis, varied between 121.9 and 143.6.

Figure 5-3 depicts the replies received by BCAS for one scan in a histogram table format. As seen in the figure, each fruit reply generally constitutes a single entry in one of the many TOA bins.

TABLE 5-9. FRUIT AND TRANSPONDER REPLIES PER SCAN

ſ	Run #	<u>N</u>	m	<u>s²</u>	<u>m</u>	<u>s²</u>	<u>% of Fruit</u>
	1	98	73.765	454.244	143.612	999,186	51.36%
	2	127	78.315	1015.761	129.291	1447.194	60.57%
	5	100	86.050	525.372	145.880	944.825	58.99%
	6	105	78.190	287.031	131.114	733.760	59.64%
	9	93	69.656	542.191	127.731	784.952	54.53%
	10	87	78.920	642.420	121.897	808.834	64.74%

Fruit Replies

,

.

5.12 NORTH PULSE DETECTION

During JTIDS testing, North pulse measurements were obtained for radial runs in the vicinity of Mizpah. The North/South pulses were transmitted for 32 consecutive scans beginning at North crossing and another 16 pulses were transmitted every other scan beginning at South crossing for a total of 48 pulses per scan.

The average number of North pulses (see Table 5-10) received per antenna rotation is approximately 47 within a deviation of approximately 5. The standard deviation appears to vary with time due to causes we cannot explain; i.e., it is significantly different for different runs.

It follows from the observed mean and standard deviation that some North pulses are not being detected and in other instances noise is being accepted as North pulses.

5.13 JTIDS INTERFERENCE MEASUREMENTS WITH BCAS

5.13.1 Introduction

Special flight tests were conducted to obtain data on the compatibility of JTIDS (Joint Tactical Information Distribution System) with the semi-active model of the Beacon Collision Avoidance System (BCAS). This mode of BCAS requires the transmission of antenna-position pulses (north and south) from ATCRBS ground interrogators. Since no simulator exists for this purpose, the flight tests were, of necessity, conducted in the FAA-established BCAS developmental test area around Atlantic City, N.J., where a number of interrogators have been modified to produce azimuth reference pulses. This area does not represent a worst-case BCAS environment. During the BCAS flight tests, the JTIDS transmitter was operated in the wideband double-pulse 40%/40% mode with notch filters installed at 1030 MHz and 1090 MHz. JTIDS peak power was 165 watts. The test plan and resulting measurements are contained in Reference 3.

	JTI	IDS Off			JTI	OS On	
Run #	<u>N</u>	m	<u>_s</u> ²	<u>Run #</u>	<u>N</u>	m	<u>s²</u>
1	101	45.059	9.076	3	129	47.698	15.962
2	129	48.550	10.647	4	153	47.576	14.437
5	101	46.336	11.346	7	107	46.252	25,261
6	110	46.127	45.305	8	89	46.933	56.626
9	96	48.771	10.642	11	81	46.148	5,292
10	117	48.103	32.868	12	. 99	46.253	8.950
TOTAL	654	47.033	21.539		663	46.927	28.856

TABLE 5-10. N	JORTH PULS	ES DETECTED	PER	ANTENNA	ROTATION
---------------	------------	-------------	-----	---------	----------

This section provides a description of BCAS, particularly of the measurements made by the system to track threat aircraft. In addition, the statistical tests are described that were used to assess the effect of JTIDS on BCAS signal-detection capability and measurement accuracy.

5.13.2 Equipment Tested

When the JTIDS EMC (Electro Magnetic Compatibility) tests were being conducted, the BCAS program was in the developmental stage with the active and passive mode hardware undergoing flight tests. The active and passive hardware were built using, to the maximum extent possible, off-the-shelf equipment. They were built to demonstrate the BCAS concept and were not representative of an optimized design. The susceptibility of the BCAS passive mode to a JTIDS signal environment was tested. The ATCRES transponder portion of the BCAS system was effectively tested under the ATCRES tests.

5.13.3 Applicability of Measurements to the Active Mode of BCAS

Identical 1090 MHz receiver front ends are employed in BCAS for both the active and passive mode because the basic signal structures associated with transponder replies to either BCAS interrogations (active mode) or ATCRBS ground beacon interrogations (passive mode) are identical. Therefore, the results of the BCAS passive tests can, to some degree, be extrapolated to the active mode of BCAS.

5.13.4 Flight Tests

Test flights were flown at NAFEC on January 6 and January 7, 1977, to evaluate the effects of JTIDS signals on the BCAS system. The BCAS-equipped aircraft was an FAA-owned Grumman Gulfstream (G-159) test-bed aircraft from NAFEC. The JTIDS-equipped aircraft was an Air Force Flight Inspection C-140 Jetstar. The aircraft were flown in tandem at a vertical separation of 1000 feet with a top-mounted antenna on the lower aircraft and a bottom-mounted antenna on the upper aircraft to maximize coupling as described in Reference 3.

Accuracy of Measurements. The primary question of interest here is whether the accuracy in the measurement of TOA and DAZ is affected by the presence of JTIDS signals. Two series of flights were flown. In the first set of runs, the BCAS aircraft, tracked by the C-band Extended Area Instrumentation Radar (EAIR) at NAFEC. flew past a fixed ATCRBS transponder (Mizpah Tower). The BCAS system recorded six types of data, including the differential azimuth between the BCAS aircraft and the fixed transponder as seen from the Air Traffic Control Beam Interrogator (ATCBI-3), which is collocated with the NAFEC ASR-5, and the TOA of the replies to the ATCBI-3 from the fixed transponder. On alternate sets of outbound and inbound runs, the JTIDS was turned on. The measured values of TOA and differential azimuth were compared with predicted values computed from the geometry, as determined from the surveyed positions of the radar and transponder and the position of the aircraft as measured by the EAIR radar. On the same runs, statistics were gathered on the number of azimuth reference pulses per antenna rotation that were detected by the BCAS system and the number of fruit replies received.

<u>Quality of Radar Lock</u>. The primary question in this case is whether JTIDS signals affect the ability of BCAS to detect radar mainbeam and SLS signals. Longer runs radially away from and toward the radar were flown throughout this portion of the test. Counts of the mainbeam and SLS pulses were taken for each scan of the ATCBI-3 while the JTIDS was turned on or off every thirty seconds. The radial runs were flown in from or out to the acquisition/loss-of-lock range.

5.13.5 Analysis

<u>TOA Measurements</u>. Measurements of the TOA of the signal from the fixed transponder in the Mizpah Fire Tower were made during 12 radial runs past the tower, six inbound and six outbound. The JTIDS transmitter was on for half the runs and off for the other half. The BCAS-equipped aircraft was tracked by the C-band EAIR radar. The expected TOA at the time of each ATCBI-3 mainbeam passage was computed, using the kn own positions of the ATCBI-3 and the fixed transponder and the position of the BCAS aircraft as measured by the EAIR radar. The differences between the predicted (computed) TOA and the measured TOA were calculated and their sample means, m, and sample variances, s^2 , were tabulated. No EAIR measurements were taken during Run 12 (see Table 5-11). TABLE 5-11. TOA DIFFERENCES IN MICROSECONDS BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR

	JT	IDS Off			<u> </u>	FIDS On	
-	- <u>r</u>	T	1			•	· · · · · · · · · · · · · · · · · · ·
Run #	N	m	s ²	Run #	N	m	s ²
Outbound							
1	53	.238	.042	3	57	.205	.024
5	58	.220	.024	7	51	.242	.027
9	59	.240	.027	11	53	.242	.028
(1,5,9)	170	.233	.030	(3,7,11)	161	.230	.026
Inbound							
2	58	.169	.018	4	60	.171	.013
6	55	.197	.012	8	56	.187	.015
10	63	.209	.017	12	(no]	EAIR data)	
(2,6,10)	176	.192	.016	(4,8)	116	.179	.014

N = number of samples in set

104

m = sample mean of data in set

 s^2 = sample variance of data in set

The measurements show that, independent of JTIDS, there was a difference between measurements on the inbound and outbound runs. Since each point in space at which a measurement was made was unique and had no precise counterpart on any other run, there is no reason to treat the runs as closed entities to be considered separately. In view of this, it is appropriate to test separately the inbound data and the outbound data. Thus, all measurements made under the same set of circumstances (e.g., outbound with JTIDS off, Runs 1, 5 and 9) were aggregated. The question of interest is whether JTIDS adversely affects TOA measurements, i.e., tends to increase the variance. Thus a one-tailed F-ratio test is appropriate (Natrella, Section 4-2.2).

If N_A and N_B are the number of measurements in each of the two sets, $1-\alpha$ is the confidence level of the result, and s_A^2 and s_B^2 are sample variances of these two measurement sets, then the ratio of the sample variances, F, is computed by

$$F = s_A^2 / s_B^2$$
 5.13-1

If F > $F_{1-\alpha}$ for N_A -1 and N_B -1 degrees of freedom, then the variability of the measurements with JTIDS on exceeds the variability of measurements when JTIDS is not present. Otherwise, there is insufficient evidence to assert that JTIDS affects the measurements. The level of significance of the test was set at .05, i.e., the probability of falsely concluding that a difference exists. $F_{1-\alpha}$ is the 1- α percentile of the F distribution with N_A -1 and N_B -1 degrees of freedom, i.e., the 95% confidence level.

It is to be noted from Table 5-11 that, in fact, the variance is less with JTIDS on than with JTIDS off in both instances. (The same is true of the mean differences between measured and predicted TOA measurements, i.e., the systematic bias error.) The computed F values for the outbound and inbound data are 0.867 and 0.875, respectively. The critical F value for a 95% confidence level was found to be approximately 1.23. Therefore, clearly, the results lead to the conclusion that JTIDS does not increase the variability.

<u>Differential Azimuth Measurements</u>. The differential azimuth measurements were made at the same time as the TOA measurements, and the differences between measured and predicted differential azimuths were calculated in the same way as TOA differences. They are shown in Table 5-12. The difference between the predicted azimuth and measured azimuth, as a function of antenna scan were computed.

Again, there is a tendency for the sample variances to be greater on the outbound legs than on the inbound, though the difference is not as great as in the case of the TOA measurements. It was nevertheless decided to analyze the two cases separately. Again α , the significance level of the tests, was set at 5%, and a test was made to determine whether there is reason to believe that, with JTIDS on, the random errors in measuring differential azimuth are greater than with JTIDS off. The computed F values for the outbound and inbound measurements were 0.874 and 0.921, respectively. Again, the critical F value for a 95% confidence level was found to be approximately 1.23. Clearly, since the sample variance with JTIDS on is actually smaller, the results of the test are that one must conclude that the random errors in measuring differential azimuth are not affected by JTIDS pulses.

<u>Fruit</u>. The number of fruit replies detected by the BCAS (transponder replies received that the BCAS system could not correlate with any target) was recorded for Runs 1 through 12, i.e., the flights past the fixed transponder. The fruit reply data are tabulated in Table 5-13. The data for Runs 2 and 4 are anomalous. When compared to the rest of the data, the variances are excessively large. In addition, the mean number of fruit replies per scan on Run 4 was 132, which is more than 40% higher than the run with the next higher mean fruit rate, i.e., Run 11. To avoid having any such extraneous values influence the results,

TABLE 5-12. DIFFERENTIAL AZIMUTH IN DEGREES BETWEEN BCAS MEASUREMENTS AND VALUES PREDICTED ON THE BASIS OF EAIR MEASUREMENTS WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR

	JTIDS	Off			JT	IDS On	•
Run #	N	m	s ²	Run #	N	m	s ²
Outbound							
1	53	061	.157	3	56	076	.152
5	58	125	.077	7	51	149	.099
9	59	065	.129	11	53	139	.060
(1,5,9)	170	084	.119	(3,7,11)	161	119	.104
Inbound							
2	58	107	.111	4	60	106	.111
6	55	101	.079	8	56	114	.075
10	63	158	.114	12	(no	EAIR data)	
(2,6,10)	176	127	.102	(4,8)	116	110	.094

N = number of samples in set

m = sample mean

 s^2 = sample variance

2.829 and $|m_{\rm A}^{-}m_{\rm B}^{-}|$ was found to be 5.995. Since 5.995 is larger than δ , one must conclude that, with 95% confidence, there is sufficient evidence to indicate significant difference in the two mean fruit reply rates.

Thus it appears that the JTIDS signals did have some effect on the number of fruit replies received by BCAS. However, since the meaningful performance parameters of the system -- the TOA and differential azimuth measurements -- do not appear to be affected by JTIDS, the change in fruit rate is of no practical significance. For instance, the TOA measurements of the run with the highest fruit rate were considerably better than the average for all runs.

Azimuth Reference Pulse Detection. The BCAS system continuously acquired the azimuth references pulses transmitted by the ATCBI-3. The number of such pulses detected per antenna rotation period was typed out on the system teletype for each rotation period.

These data for Runs 1-12 past the Mizpah Tower are shown in Table 5-14. No definite conclusion can be drawn from these data, since there is too much BCAS system variability among runs. For example, with JTIDS-off and the aircraft flying the inbound leg, the variance is 10.65 on Run 2 and 45.31 on Run 6.

The radar emitted 48 pulses per rotation, 32 consecutively after passing north and 16 on alternate interrogations after passing south. Both misses and false detections may occur. Misses and false detections during the same scan would offset each other with respect to the number of detected pulses. Thus, the net number of pulses received is, in itself, not a very good indication of system performance, but no other measurable parameter was available in the BCAS model tested.

The overall net difference between the mean number of azimuth reference pulses detected with JTIDS on and JTIDS off is slight (\simeq .90 per scan). The variance varies greatly from run to run, both with JTIDS on and JTIDS off. No consistent pattern to this variation is evident, as a function of either time or flight

	JTIDS	Off				JTIDS On	
Run #	N	m	s ²	Run #	N	m	s ²
1	101	49.059	9.076	3	129	47.698	15.962
2	129	48.550	10.647	4	158	47.576	14.437
5	101	46.336	11.346	7	107	46.252	25.261
6	110	46.127	45.305	8	89	46.933	56.626
	06	18 771	10.642	11	81	46.148	5.292
9	30	40.771	32,868	12	99	46.253	8.950
10	11/	40.105	52.000				
Total	654	47.832			663	46.927	

TABLE 5-14. AZIMUTH REFERENCE PULSES DETECTED PER ANTENNA SCAN WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR

N = number of scans

m = sample mean

 s^2 = sample variance

direction. Thus, there is no satisfactory test for determining the true influence of JTIDS on the number of azimuth reference pulses received. The effect, if any, is small relative to the inherent variability in the number of pulses detected scan to scan.

<u>Mainbeam Hits</u>. The second series of tests consisted of tandem flights of approximately 200 nautical miles (see Reference 1), with the JTIDS transmitter turned on and off for alternating 30-second intervals. One radar antenna scan immediately preceding and one immediately following the instant that the JTIDS receiver was switched on or off were disregarded in analyzing the data on mainbeam hits. This was done to assure that mainbeam passage was not associated with the wrong condition of JTIDS.

Examination of the plots (see Reference 1) of mainbeam hits detected as a function of time shows that both the number of mainbeam pulses and the P_2 SLS pulse ratio tend to increase as the aircraft approaches the radar, and tend to decrease as the aircraft flies away from the radar. This decrease continues until radar lock is lost. No qualitative difference can be detected in the plots associated with the intervals when JTIDS was on or off.

The data for Runs 16 and 18 are anomalous. The data shows that, on Run 16, JTIDS-off data displays the maximum variability measured for the baseline, while on the same run the JTIDS-on data displayed the minimum variability measured for the test data. Run 18 was similar; however, this time the maximum variability was measured for JTIDS-on data while the minimum variablitiy was displayed by the JTIDS-off baseline data. These two runs were excluded from the statistical tests. However, there is evidently a great deal more similarity in the number of mainbeam hits sensed during each run with JTIDS on or JTIDS off than there is between runs (see Table 5-15). Accordingly, statistical tests were performed on the results of each run separately. Two tests were performed, the F-ratio test for equal variances and the generalized two-sided t-test for equal means. The variability of the number of mainbeam hits per mainbeam passage with JTIDS off and with JTIDS on was compared. The first F-test at the level of significance

 α = .05 was used. The difference in the mean number of hits and the effective degrees of freedom, f', were computed for each run; then the generalized two-sided t-test at the level of significance α = .05 was performed (Natrella, Section 3-3.1.2).

The data and the formal results of these tests are shown in Table 5-15. At 95% confidence, a difference in the variability of mainbeam hits with JTIDS off and with JTIDS on was found only in Run 22. No significant differences in the mean number of mainbeam hits were found at the $\alpha = .05$ significance level. Thus the measures used indicate that JTIDS does not affect the ability of BCAS to detect ATCRBS mainbeam interrogations.

Side Lobe Suppression (SLS) Ratio. The ratio of the number of side lobe suppression pulses detected by the BCAS system to the total number transmitted per ATCRBI-3 antenna rotation was monitored on the same flights in which the number of detected mainbeam pulses were monitored. The same statistical tests were performed on the means and variances to decide whether the JTIDS system influenced the results. The F-test at the α = .05 level of significance was used to test whether the variances of the measurements differed significantly, and the generalized two-sided t-test at the α = .05 level of significance was used to compare the average number of SLS pulses received per antenna rotation. The effective degrees of freedom, f', was calculated for each run and the corresponding table value for t_{.975} was selected for the t-test computation. The data is plotted in Reference 3 and the results are presented in Table 5-16. The variance is significantly different on one run. Therefore, the difference in the average number of SLS pulses detected is declared to be statistically significant only on this run since the other nine runs passed the tests. Hence, the tests do not show any tendency of JTIDS to affect the number of SLS pulses detected by the BCAS system.

Again, the plots of the data are more meaningful and informative. They show variation in the SLS ratio with respect to range from radar, but no perceptible difference that can be associated with whether JTIDS was on or off.

TABLE	5-15.	NUMBER	OF	MAIN	BEAM	HITS	PER	SCAN
							1 11/	JUAN

.

	<u></u>	TIDS Off			JTIDS On		Statist	ical R	esults
Run #	N	m	s ²	N	m	s ²	F-ratio	f'	t-test
14	18	7.833	19.909	22	7.455	23.785	S	40	S
15	52	14.000	18.080	54	13.352	22.724	S	105	s
16	18	13.389	25.543	17	15.059	1.309	AD	19	AD
17	26	11.462	17.775	31	12.871	11.985	s	50	S
18	9	13.444	3.779	4	6.000	48.609	AD	3	AD
19	40	12.425	23.688	34	13.118	23.503	S	72	S
20	39	12.615	21.818	40	13.700	16.777	S	77	S
21	23	11.261	17.024	21	9.095	29.987	S	39	S
22	83	17.000	14.684	83	17.506	8.620	D	155	s

N = number of scans in sample level

m = sample mean

 s^2 = sample variance

AD= Anomalous Data

S = Same Population

D = Different Population

•

[JTIDS	Off	JTI	DS On		<u>Statisti</u>	.ca1	<u>Results</u>
Run #	N	m	s ²	N	m	s ²	F-ratio	f'	t-test
13	25	58.084	635.242	30	62.011	565.679	S	52	S
14	18	81.380	5.449	22	82.077	17.775	D	35	S
15	52	63.217	635.695	54	62.066	571.121	S	105	S
16	18	65.547	554.085	17	75.163	107.081	S	24	S
17	26	29.142	698.809	31	40.047	653.723	S	55	S
18	9	58.863	154.928	4	26.064	388.326	S	5	D
19	40	53.409	608.116	34	53.529	724.740	S	70	S
20	39	52.375	857.143	40	50.015	787.925	S	79	S
21	23	45.035	908.661	21	47.856	454.144	S	41	S
22	83	78.641	169.911	22	81.579	83.759	S	149	S

TABLE 5-16. SLS RATIO FOR EACH SCAN WITH A JTIDS DOUBLE PULSE WAVEFORM AT A 40%/40% TIME SLOT DUTY FACTOR

N = number of scans in sample

m = mean sample

 s^2 = sample variance

S: Same Population

D: Different Population

5.13.6 <u>Summary of Results</u>

These tests attempted to determine the compatibility of JTIDS with a future BCAS system. Since BCAS is still under development, testing was limited to the Litchford semi-active system model. The JTIDS transmitter was operated in the wideband double-pulse mode with a 40%/40% time-slot duty factor and with notch filters installed at 1030 MHz and 1090 MHz. The JTIDS system peak power was 165 watts.

The active system was not tested since the same equipment was included in the ATCRBS tests and, therefore, the ATCRBS results can be used as an indication of compatibility.

The results of the statistical analysis of the flight data from the semi-active system indicate the following:

- 1. The presence of JTIDS does not affect the ability of the BCAS to measure differential time of arrival (TOA) or differential azimuth (DAZ).
- 2. The number of fruit replies was increased by 6 replies per radar scan (77 to 83) when the JTIDS signal was present; however, this did not appear to influence the BCAS performance.
- 3. JTIDS had no significant affect on the mean number of mainbeam hits or the side lobe suppression ratio.

For a more complete analysis, the reader should examine the data plots in Reference 1. A visual comparison of the BCAS measurements with JTIDS off and JTIDS on clearly shows that JTIDS does not influence the BCAS system. For example, regardless of the JTIDS condition, examination of the mainbeam data shows only that the number of mainbeam pulses tends to increase as the aircraft approaches the radar and to decrease as the aircraft flies away from the radar. However, while there were no major areas of interference, care should be taken in the development of the two systems to insure continued compatibility.

5.14 FALSE ALARMS/FALSE TRACKS AND MISSED ALARMS/MISSED TRACKS

Assessments for false alarms/false tracks and missed alarms/missed tracks were made by comparing BCAS data with ARTS III data. The ARTS III data extraction tapes were processed by both the Flight History program and the Widened Azimuth Window program. The BCAS tapes in turn were processed by the BCAS Detailed Processing Programs. A brief discussion of these programs follows.

A flight history listing outputs (Figure 5-7) information consisting of scan number, time, aircraft identification, beacon code, altitude, range, azimuth, run length and number of transponder replies. These entries are in numberical ascending sequence of scan numbers for the specific aircraft, with the aircraft ordered in sequence by beacon code. The widened azimuth window program processes ARTS III target report messages of aircraft that are present in the widened azimuth window of BCAS. In this instance, it processes ASR-4 radar target messages that are within a +18° window of OWN. Figure 5-8 depicts a widened azimuth window output listing. The output is on a per scan basis and contains beacon code, time, range, azimuth, altitude, TOA, DAZ, range, bearing, run length and number of transponder replies. The BCAS detailed processing program listing, Figure 5-9, contains target report information grouped on a per radar basis with global track data interspersed. A list of abbreviations include:

SCAN:	scan number
RID B:	interval radar identification
TID:	target identification
BCD:	beacon code
NRP:	number of transponder replies
TOA:	time of arrival in μ seconds
DAZ:	differential azimuth
TAL:	target's altitude
OAL:	OWN's altitude
LTRN:	local track number.

		TOUCH BENES	<u>1 - CODE 4000</u>	TAPE IVI		FILE & SEGRENT				······	FAGE	2
SCAN	TIME	ACID RB	C C ALT	RANGE	AZIMUTH	VELOCITY DIRECTION	FIRM	W/S	VA_	_vc_	RUN	нī
	•											
14	12150118		106	25.00	136.76	ACAACAACAACAA		1	3	3	13	— ì
15	12150123	N47 436	6 1 106	24.81	207.07	144.27 316.97	37	· · ·		·		
15	12:50:23		105	24.81	207,25	AAC ACAACAACAAC AACA	•	1	3	3	19	ĩ
15	12:50:22		105	24.94	136.76	AACAA+AACAACAAC		1	3	3	15	1
16	12150127	N47 436	4 1 105	24,75	207,42	144.27 316,97	37					
16	12:50:27		105	24.75	207.86	C CAACA . CAACAA.	AACAAC	1	3	3	19	ì
16	12:50126		105	24.87	136,23	AACA++A+CAACAAC		0	3	3	15	1
17	12:50131	N47 436	6 1 105	24.69	207,95	154.21 316,85	37					
17	12:50:30		104	24.69	208.21	ACA.CAACAACAACAA.AAC	<u>C</u>	1	3	3	20	1
17	12:50:30		104	24.81	135.88	CAACAACAACAACAA		1	3	3	15	1
18	12150135	N47 436	6 1, 104	24,62	208,39	159.18 316.79	37	·			•	
18	12:50:34		104	24.69	207,60	A+C++++C++++C+A		0	з	3	17	1
18	12:50134		104	24.75	135.26	AACAACAACAA.AA	,	1	3	2	-14	1
19	15120133	N47 436	6 1 104	24.56	208.56	139.57 319.09	37				·	
19	12:50:38		104	24.50	208.74	ATAACAACAACAA + AACAA		ī	з	3	19	1
19	12:50138		104	24.62	134.47	ACAACAA+AACA		0	3	2	15	1
20	12:50143	N47 436	6 1 104	24,50	208,92	147.20 319,84						<u> </u>
<u> </u>	12:50:42		103	24,50	209,36	CAACA+CAACAACAACAACA	AC	1	3	3	22	2
20	12:50142		103	24.62.	134.21	AAC+ACAACAA++AC		0	3	. 3.	15	1
21	12:50147	N47 436	6 1 103	24,44	209,36	154.45	. 37				_	
21	12:50:46		103	24.44	209,44	CAACAACA+CA+CA+CA+CA	\	1	.3	3	21	1
51	12:50:45		103	24.56	134.56	CA+CAACA		0	3	2	8	
55	12150151	N47 436	6 1 103	24.37	209,79	154.45 318,69	37					
22	12:50:50		0	24,37	209.27	AA+A++++++A+AA++++AA	AC+A++ACA	0	3	1.	28	1
23	12:50:54	N47 436	61	24.31	209,97	142.76 322.00	37					
23	12:50154		. 102	24.31	209.71	ACAAC+A+AAC+++AAC++C		1	3	3	20	-1
24	12150158	N47 436	6 1 102	24.25	210,23	135.70 323.43	37					
24	12:50:58		102	24.25	210,67	A., . CAACAACAACA.CAA		Ĩ	Э	З	15	1
24	12150157		0	24.37	132.89	AA+AÁ++A	······································	0	3	0	8 -	
25	12:511 2	N47 436	6 1 102	24,19	210,67	147.70 321.77						
25	12:51: 2		102	24.25	210.85	AACAACAACAACAACAACAA	CA	11	3	3	2 2	2
26	12:51: 6	N47 436	6 1 102	24.12	211,11	149.90 320.71	37					
- 26	12:511 6		102	24.10	211 25	AT ANTANCA CANCAL		· · · · ·				

FIGURE 5-7. FLIGHT HISTORY LISTING

.

118

SUR-S	VSTEM 1 ASS	TONED REACON	CODE 4370	TAPE IDE C	067	FILE 1	SEGMENT 1	i				PAGE	58
SCAN	TIME	ACIÓ RBC	C ALT	RANGE	AZIMUTH	VELOCITY D	IRECTION F	ĪRM	W/S	VÀ	ŶĊ	RUN	ніт
16	12150127	N48 4370	1 100	22,81 22.87	222,89 222.80	214.71 C.ACAAC.ACA	140.31 ACAAC		1	3	3	16	·ĭ4
17	12:50:31	N48 4370	<u>1 100</u>	22.87	222,19	216.97	139.60	37 `	0	3	0-	-11	-11
18	12150135	N48 4370	0	22,94	221,66	219.66		37	0	3	٥	10	8
19	12:50:39	N48 4370	1	22,94	221,04	219.66	140.19	37		3		11	<u> </u>
50	12:50:43	N48 4370		23,00	220,43	217-43 DAADA • DAADA	140.91	37	0	3	0	14	12
21	12:50:47	N48 4370	1	23.00	219,81	219.66	140.19	37	0	3	<u> </u>	8	8
- 22 - 22	12150151	N48 4370	- 1	23.06	219.29	217.43	140.91	37	·				
23	12150155 12150154	N48 4370	0 CST 0	23.12 23.19	218,76 218,94	217+43 AADAADA	140.91	36	Ó	З	ō	7	
24	12:50:59	N48 4370	1	23.19	218.14	217•43	140.91	36					
25	12:51: 2	N48 4370	O CST	23.25	217.62	217.43	140.91	35					<u> </u>
26	12:51: 6	N48 4370	0 CST	23,31	217.09	217.43	140.91	33					
27	12:51:10	N48 4370	0 CST	23,37	215,95	217.43	140.91	32	ī			17	i
	12151114	N48 4370		23.44	215,51	217-43						17	
29	12:51:18		0	23.56	215.68	ADAA • AADAAI	140.91	36	1			• /	
30	12:51:22	N48 4370 N48 4370	0 CST	23,62	214,45	217.43	140,91	35 .					
31	12151126		0	23.69		AF AAEA .	EAAEA • E			3			•
32	12151:30	N48 4370	O CST	23,69	213.57	CA+CAAU+AU	AAUA+U+AUA	Å	1	2	0	21	ī

FIGURE 5-7. FLIGHT HISTORY LISTING (CONTINUED)

119

.

CODE	TIME	RANGE	AZİMUTH	ÂLTITÜDE	TOA	DĂZ	RÂNGE	BEARING	RUN HIT	
4366 4370	13124148+953 13124149+195	24.5625 22.8750	208.477 222.451 -	104(* * 1+7116) * 100(*** 1+6458)	47.461	•13•975	- 5+9953	141+684	2119 ACAACAAC	ACAACA.CAACA
										ÂAUAĂŬAAŨAAUA
. 	• • •		- · • •	· ··· ··· ···	•••••••••••••••••••••••••••••••••••••••			• • •		
					(a)					
678 i										
RTS I	II WIDENED AZII TEM 1 SCAN 21 TIME	MUTH WINDO Own Code 4 Range	A PROGRAM 5370 Azimuth	ÂLTÌTÙDE	TĐÀ	ĊĂZ	ĂTE 2 SEI Rànge	P BEÀRÌNG	PAGE 002:)
RTS 1 108575 1366	II WIDENED AZII TEM 1 SCAN 21 TIME 13124156.820	MUTH WINDO OWN CODE 4 RANGE 24.5000	AZIMUTH 209:180	ÄLTITÜDE	78Å 41.568	0ÅZ •1Ï•953	ĂTE 2 SEI Rànge - 5.1663	₽ BEÀRÌNG -142+654	PÁGE 002: RUN HIT 22 22 AACÁACÁAC	
IRTS Ì IUBSYS IODE I366 I370	II WIDENED AZI TEM 1 SCAN 21 TIME 13124156+820 13124156+937	MUTH WINDO OWN CODE RANGE 24.5000 22.9375	AZ IMUTH 209:180 221:133	ÄLTITUDE 1041 1.7116) 1001 1.6458)	₹ ₹ ₹ ₹ 568 ; 600	DĂZ •11.953	ÀTE 2 SEI Rànge - 5.1663 	P BEÀRÌNG -142.654 JNDEFINED	PÁGE 002: RUN HIT 22 22 AACIACAICI 11 11	ACAĂCĂĂĊĂĂĊĂ ADAADAĂDAAD
RTS I SUBSYS BDE 366	II WIDENED AZII TEM 1 SCAN 21 TIME 13124156+820 13124156+937	MUTH WINDO OWN CODE RANGE 24.5000 -22.9375	AZIMUTH 209:180 221:133	ÄLTÍTÜDE 1041 1.7116) 1001 1.6458)	79Å 41.5568 .000	CÁZ •11.953 •000	ÄTE 2 SEI Rångë - 5.1663 0000 -	P BEÀRÌNG 142.654 JNDEFINED	PÁGE 002: RUN HIT 22 22 AACÁACAÁCÁ 11 11	ADAADAĂDAAD

. .

.

120

-

FIGURE 5-8. ARTS III WIDENED AZIMUTH WINDOW PROGRAM OUTPUT

HIT 18 BCT393557260-485 CAALACA SCP2:7705 SCN 0 PRP25045 HIT 27 BCT39357260-487 LOTUS AAAAAA SCP 3:9455 SCN 0 PRP25045 HIT 27 BCT393475513* US CACACA SCP 3:9235 SCN 28 PRP2625US SG1076 278 598 NN 119 64L T02007T ANK28.81 ACH143-00 RID B 1 2726 14 47.93005 27:03 98:00 12150123*9 1 2726 14 47.93005 27:03 98:00 12150123*9 1 2726 14 47.93005 27:03 98:00 64 12150123*9 1 2726 14 47.93005 87.03 98:00 64 12150123*9 1 2726 14 47.93005 87.03 98:00 64 12150123*9 1 2750 14 47.93005 87.03 98:00 64 12150123*9 1 2150123*0 1 2150125*0 1 2150125*0 1 405 19 1.02007T ANK137.85 ACH143*00 RID G 1 465 19 1.02007T ANK137.85 ACH143*00 RID G 1 465 19 1.02007T ANK137.85 ACH143*00 RID G 1 465 19 1.02007T ANK127.85 ACH143*00 RID G 1 466 7 83:2600 8-12150125*0 3 426 7 83:2600 8-12150125*0 1 4366 15 51:5900 8+4*7 1070 D DZ TAL LTRN GTRN TIME 1 2150127*8 2 4266 15 51:5900 8+1*7 100 TAL TAL TIN GTRN TIME 1 2150127*8 2 5107 28:13 1 366 10 717 7000 56:13 2150127*8 2 5107 28:13 1 4366 19 51:7700 86:08 20 RIP339905 3 51070 10200 000 010 38:258 38:258 =1:863 *1:863 1 4366 9 51:7700 86:08 22 RIP399905 3 518 CZ 7 88:757 NIN 35 XALACACA SCP 4:0005 SCN 82 PRP399905 3 518 CZ 7 88:757 NIN 35 XALACACA SCP 4:0005 SCN 82 PRP399905 3 518 CZ 7 88:757 NIN 35 XALACACA SCP 4:0005 SCN 82 PRP399905 3 518 CZ 7 88:757 NIN 35 XALACACA SCP 4:0005 SCN 82 PRP399905 3 518 CZ 7 88:757 NIN 35 XALACACA SCP 4:0005 SCN 82 PRP399905 3 518 CZ 78:758005 1000 10200 0	LCAS QUICK LUUK PRUGRAM RADAR/TARGET LISTING		DATE 14 I	DEC 1976 PA		
ASR4 HIT 11 BCT396400781.5US AACAACAA SCP 3.923S SCN 28 PRP2625US SUS10767 2875 558 NIN 113 0AL 10200FT ANN228-81 ACH143-00 RID B 1 2726 14 47.310US 10.38 3400 12150124-1 1 2726 14 47.310US 10.38 3400 12150124-1 3 4366 15 54-550US 12109 8200 12150124-1 1 1635 19 1.440US 8.54 54000 610 C 1 1635 19 1.440US 8.54 54000 610 C 1 1635 19 1.440US 8.54 54000 610 C 1 1635 19 1.440US 8.54 54000 12150125-0 1 1635 19 1.440US 8.54 5400U 12150125-0 1 1635 17 51-9235 SCN 0 PRP3343US SUS037 2445 559 NIN 116 6 AL 10200FT ANN27755 ACH143-260 C 1 2150125-1 1 2150125-0 1 215012	HIT 18 BCT393557260+4US CAACAACA SCP22+7709 HIT 23 BCT395745319+1US TACACACA SCP 7+8639 HIT 14 BCT396487416+7US AAAAAAAA SCP 3+9459	SCN 0 PRP18051 SCN 0 PRP25061 SCN 0 PRP33431	JS 1885 2295 2858 JS JS	2235 1845 190	5 3128	
Sigrof 2:22:5:538 Xin 119 84.1 10200FT ANN228:81 ACTIGS 00 RTD B TIME 1 2726 14 47:310US +10:38 3%600 12:50:23:9 2 1635 17 46:850US 12:09 8200 12:150:23:8 3 4366 15 5%:550US -15:95 10700 64 12:150:23:8 TVAN HIT 35 BCT397259852:0US AACAACAA SCP 3:990S SCN 81 PRP3993US 12:150:23:8 SLS 76*/137* 599 KIN 95 0AL 10200FT ANN137:89 ACH18:00 RTD G 12:150:25:0 1 1955 19 1:**********************************	ACRA HIT 11 BCT396400781.5US AACAACAA SCP 3.9235	SCN 28 PRP2625	JS	•		
1 2726 14 47.310US 10.38 34600 12150123-9 2 1533 17 46.150 51.595 10700 64 12150123-8 TVAN HIT 35 364.15 51.595 10700 64 12150123-8 SLS 7647.137-593 SK1540US 121.501 12150123-8 12150123-8 TVAN HIT 35 BCT397259852.0US AACAACAA SCP 3.990S SCN 81.0700 FT SLS 7647.137 SK1145.000 FT A0.2 TAL <ltrn gtrn<="" td=""> TIME TARGETS FBR SCAN BL RID TUNE TARGETS 165724-9 3 3 34366 7 63.260US 83.810700 51 12150125-0 12150125-0 HIT 18 ECT400427199-0US AACAACAA SCP 3.990S SCN O PHP343US 12150125-0 12150125-0 SLS 10937 284-599 N116 6AL 10200FT ANN275-55 ACH143-26 RID 12150127-8 SLS 10937 284-599 N116 6AL 12150127-15 12150127-8 12150127-8</ltrn>	SLS10767 287- 598 NIN 119 BAL TO2DOFT AWN228-81 AC TARGETS FOR SCAN 28 RID B TID BCD NRP TBA	143-00 RID B DAZ TAL I	TRN GTRN	TIME		
1 2769 13 4366 15 54.54005 12:00 12:15:02:24:1 3 4366 15 54.54005 12:00 64 12:15:02:34.8 TVAN HIT 35 BCT3972598524005 ACACACA SCOR 81 PRP3395905 SLS 7647 137 599 NIN 95 0AL 12:00FT AWN137:85 ACH143:00 RID G TARGETS FOR SCAN 81 RID G TID BCD NRP T0A DAZ TAL LTRN GTRN TIME 1 1635 19 1.44005 8:94 82:00 12:15:0:25:0 2 676 7 65:91005 4:05 34:600 12:15:0:25:0 2 726 7 65:91005 4:05 34:600 12:15:0:25:0 3 4:366 7 8:2400 7 12:15:0:25:0 3 4:366 7 8:2400 7 12:15:0:25:0 3 4:366 7 8:2400 7 12:15:0:25:0 3 4:366 7 8:24005 10:21:50:25:0 3 4:366 7 8:24005 10:21:50:27:8 4 4:366 9 1:10:800 TAKCACAA SCP 3:9205 SCN 29 PRP282505 TVAN HIT 38 BCT40[259353.9US AACAACAA SCP 4:000S SCN 32 PRP399905 SLS 827 88- 597 NIN 35 0AL 10:200FT AWN137:98 ACH143:35 RID G 11:10:ERRAAC 1 4:366 9 1:0700 10:200 TAW137:98 ACH143:35 RID G 11:10:ERRAAC 1 4:366 4:01:689 1:0700 10:200 TAW137:98 ACH143:35 RID G 11:11 BCT40[3:10:H] AACAACAA SCP 4:0005 SCN 32 PR9399905 3LS 827 88- 597 NIN 35 0AL 10:200FT AWN137:98 ACH143:35 RID G 11:11 BCT40[3:10:H] AACAACAA SCP 4:000 SCN 32 PR9399905 3LS 827 ACH143:13 AACAACAACAA SCP 4:000 SCN 32 PR9399905 3LS 827 ACH143:13 AACAACAACAA SCP 4:000 SCN 32 PR9399905 3LS 827 ACH123 AACAACAACAACAA SCP 4:000 SCN 32 PR9399905 3LS 827 ACH123 AACAACAACAA SCP 4:000 SCN 32 PR939905 3LS 827 ACH123 AACAACAACAACAA SCP 4:000 SCN 32 PR0300015 3LS 827 ACH123 ACH143:35 RID G 110 BCD NRP 10A DAZ TAL LTRN BTRN 11ME 1 4:356 4:01:689 10700 10:200 000 010 38:258 38:258 1:863 -1:863 00001 21 1 4:356 10 79:30005 7:459 SCN 75 PR93000015 3LS 07 3: 598 NIN 2:40AL 10:200FT AMN : 00 ACL143:35 RID K 1 4:356 11 79:30005 7:00 10:200 10:200 7:459 SCN 75		-10.38 34600	12150:	23.9		
3 4366 15 54.540US -15.95 10700 64 12150123+8 TVAN HIT 35 BCT397259852.0US AACAACAA SCP 3-9905 SCN 81 PRP3999US SLS 7647 137 559 HIM 95 0AL 10200FT ANNIS7.55 ACH143+00 RTD G 1 1635 19 1.440US 8+94 8200 12:50124+0 2 226 75 459100 2 226 75 459100 2 226 75 459100 2 226 75 459100 2 226 75 459100 2 226 75 459100 2 226 75 459100 3 4366 7 83.260US 8+34 10700 51 12:50127+0 3 4366 7 83.250 SCN 0 PRP2825US SLS 1037 284+ 539 NIN 116 8AL 10200FT ANN227+59 ACH143+26 R10 8 3 1635 17 51.490US 11+43 160700 64 1 12:50127+8 2 236 15 51.590US 11+43 160700 12:150127+8 2 236 15 51.590US 11+43 160700 12:150128+1 2 236 15 51.590US 11+43 160700 12:150128+1 4 366 9 51.770US 46.35 10700 12:150:27+9 1 4366 401+689 10700 10:200 fr ANN137+98 ACH143+35 R1D 6 1 1436 401+689 10700 10:200 fr ANN137+98 ACH143+35 R1D 6 1 4366 401+689 10700 10:200 fr ANN137+98 ACH143+35 R1D 6 1 4366 401+689 10700 10:200 fr ANN137+98 ACH143+35 R1D 6 1 4366 401+689 10700 10:200 fr ANN ALT 0HKR MARE 2000 FT/ANN 10		12.09 8200	12:50:	24+1		
TVAN HIT 35 BCT397259822+0US AACAACAA SCP 3-9905 SCN 81 PRP3999US SLS 764/137-59 NIN 95 0AL 10200PT AWN137:59 ACH143-00 RTD G TAL LTRN GTRN TIME TARGETS FOR SCAN 81 RTD G TID BCD NRP TAA TAL LTRN GTRN TIME 1 1655 1:4500 1:450125:0 1:2150125:0 2 226 7:65910US 8:3400 1:2150125:0 3 3466 7:83:260US 8:34 10700 51 1:2150125:0 HIT 12: BCT*00427199:0US AAAAAAAA SCP 3:9905 SCN 29 PRP2625US 53:12150127:8 3:260US 8:34 10700 51 1:150127:8 SL(3032/264+ 599 NIN 116 0AL 10200PT AWN227:59 ACH143:26 RID 8 TAL LTRN GTRN TIME TAGETS FOR SCAN 29 RID B 110 BCU NRP TAL LTRN GTRN TIME TARGETS FOR SCAN 29 RID B TID BCU NRP TAL LTRN GTRN TIME TAL LTRN GTRN TIME TARGETS FOR SCAN 29 RID 5 TOL 3005 TIF 3:35 RID 5 3:600 1:2150127.8 1:2150127.8 SL(3032/264+ 399 NIN 116 0AL 10200PT AWN137199 ACH143:35 RID 6 1:2150127.8 1:2150127.8 1:2150127.8 SL(3032/264 53:5933.9US AACAACAA SCP 4:000S SCN 82 PRP3999US 3:2582	3 4366 15 54•540L	•15•95 10700	64 12150:	23•8		
SLS 76*/13*-599 ML 95 64L 10200FT AMM137:59 ACH143:00 MLD G TALLTRN GTRN TIME 1 1635 19 1*440US 8:94 ML 200 12:50:25.0 2 2726 7 65:910US 4:00 S 8:94 M200 12:50:25.0 3 4366 7 8:32:00S 8:34 10700 51 12:50:25.0 HIT 12 BCT+00427199+0US AXAXAXA SCP 3:9235 SCN 29 PMP2625US 9:34:509 ML 12:50:25.0 SLS 76W 52:4:59 ML 116 BCL NUP 78A 02:00 12:150:27.8 12:50:27.8 XARGETS FOR SCAN 29 RID B TID BCD NRP 78A DAZ TAL LTRN GTRN 71ME XARGETS FOR SCAN 29 RID B TID BCD NRP 78A DAZ TAL LTRN GTRN 71ME XARGETS FOR SCAN 29 RID B TID BCD NRP 78A DAZ TAL LTRN GTRN 71ME XARGETS FOR SCAN 29 RID B TID BCD NRP 78A DAZ TAL LTRN GTRN 71ME XARGETS FOR SCAN 29 RID B TID BCD NRP 78A DAZ TAL LTRN GTRN 71ME XARGETS FOR SCAN 29 RID S 10:200FT AMN27:59 ACH143:26 RID 6 12:150:27.8 12:150:27.8 X2 9366 16 51:590US +14:76 10700 12:150:27.9 12:150:27.9 12:150:27.9 TVAN HIT 38 BCT+01259533.9US AACAACAA SCP 4:000S SCN 82 PRP3999US 12:150:27.9 12:150:27.9 12:150:27.9 TVAN	TVAN HIT 35 BCT397259852+0US AACAACAA SCP 3-9905	SCN 81 PRP3999	US			
TARGETS FOR SLAW B1 KID G 100 100 100 100 100 100 110 100 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 110 100 110 110 100 110 110 100 110 110 100 110 110 100 110 110 110 110 100 110 <t< td=""><td>SLS 7647 137 599 NIN 95 BAL 10200FT AWN137 59 AC</td><td>143+00 KID G</td><td>TRN GTRN</td><td>TIME</td><td></td><td></td></t<>	SLS 7647 137 599 NIN 95 BAL 10200FT AWN137 59 AC	143+00 KID G	TRN GTRN	TIME		
1 1:635 19 1:440US 8:94 8:200 12:50:25:0 3 4:260US 4:055 3:4600 12:50:25:0 12:50:25:0 HIT 12:80:23:0 8:34:000 51 12:50:25:0 ASR4 HIT 12:80:23:0 8:34:000 51 12:50:25:0 ASR4 HIT 12:80:23:07:0US AAXAAAA SCP 3:99:0S 0 PRP3243US ASR4 HIT 11:80:12:00:27:8 0 12:50:27:8 0 0 XSR4 HIT 11:00:07:0US AAXAAAA SCP 3:92:0US 12:50:27:8 0 XSR4 HIT 11:00:02:7 BUD TID BUD NRP TPA DAZ TAL LTRN GTRN TIME V2:276 9:48:80:00:00:01:7:3:3:46:00 12:50:27:8 0	TARGETS FOR SLAN 81 HID G TID DED HAT TOA					
2 2726 7 834 3600 12150:25+0 11250:25+0 11250:25+0 11250:25+0 11250:25+0 12150:25+0 12150:25+0 12150:25+0 11250:25+0 11250:25+0 12150:25+0 12150:25+0 12150:25+0 12150:25+0 12150:25+0 12150:25+0 12150:27+8 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:25+1 12150:27+8 12150:27+8 12150:27+8 12150:25+1 12150:259353:930 ACAL COLSPA	1 1635 19 1.440	8.94 8200		25+0		
HIT 12 BCT+000427199+0US AAAAAAAA SCP 3-9405 SCN 0 PPP3343US ASR4 HIT 11 BCT+000223677*0US AACAACAA SCP 3-9235 SLN 29 PRP2625US SLS1093/ 284- 599 NIN 116 80A 10200FT AWW227-59 ACH143-26 RID B TARGETS FOR SCAN 29 RID B TID BCD NRP TVA DAZ TAL LTRN GTRN TIME V2 4366 16 51.590US 110-43 34600 V2 4366 16 51.590US 110-43 34600 V2 4366 16 51.590US 110-43 34600 V2 4366 16 51.590US 11+43 V2 4366 17 51.790US +6.35 10700 121501281 4 4366 9 51.770US +6.35 10700 SEX 8277 88: 537 NIN 95 0AL 10200FT AWN37798 ACH143-35 RID G INTERNAL CUCRC CUCRC CUCRC CUCRC CUCRC INTERNAL CUCRC CUCRC CUCRC CUCRC INTERNAL CUCRC		S 8.34 10700	51 12:50:	25+0		
ASR4 HIT 11 BCT400323677.0US AACAACAA SCP 3.9235 SCN 29 PRP2625US SLS1093/284-599 NIN 116 0AL 10200FT AWA27.59 ACH143.26 RID 8 TARGETS FUR SCAN 29 RID 8 TID BCD NRP T0A DAZ TAL LTRN GTRN TIME /1 2726 9 48.840US 10.43 34600 12150127.8 /2 4366 16 51:590US 11.43 38200 12150127.8 /2 4366 16 51:590US 11.43 8200 12150128.1 3 1635 17 51.490US 11.43 8200 12150128.1 4 366 9 51.770US +6.35 10700 12:50:27.9 TVAN HIT 38 BCT+01259353.9US AACAACAA SCP 4.000S SCN 82 PRP3099US SLS 8277 88-597 NIN 95 0AL 1020DFT AWN137.98 ACH143.35 RID 6 INTERNAL TIE-0REAKER 0 51.7CVX PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CL6CK D17.CVX PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT 1 4366 401.689 10700 10200 000 010 38.258 38.258 +1.863 -1.863 0001 21 NB TURN MAXIMUM RATE 2000 FT/MIN UP TARGETS FOR SCAN 82 RID G TID BCD NRP T0A DAZ TAL LTRN GTRN TIME 1 1635 15 1.830US 9.42 8200 12150129.0 SLS 0/ 3.595 NIN 24 0AL 10200FT AWN .0 0 ACH143.35 RID K 1 4366 16 79.380US 5.00 75 PRP3000US SLS 0/ 3.595 NIN 24 0AL 10200FT AWN .0 0 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TID 60 NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 75 PRP3000US SLS 0/ 3.595 NIN 24 0AL 10200FT AWN .0 0 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10200 3 12148.322.1 TARGETS FOR SCAN 05 D10 NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10700 3 12148.325.1 TARGETS FOR SCAN 75 RID K TID BCD NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10700 3 12148.325.1 TARGETS FOR SCAN 05 D10 NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10700 3 12148.325.1 TARGETS FOR SCAN 05 D10 NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10700 3 12148.325.1 TARGETS FOR SCAN 05 D10 NRP T0A DAZ TAL LTRN GTRN TIME 1 4366 16 79.380US 5.00 10700 3 12148.325.1 TARGETS FOR SCAN 05 D10 NRP T0A DAZ TAL LTRN GTRN TIME		SCN 0 PRP3343	US			
ABK4 HIT 18 BUTUD3236770US AKLAKLAK 3GF 35759 ACH143-26 RID B TARGETS FOR SCAN 29 RID B TID BCD NRP TOA DAZ TAL LTRN GTRN TIME TARGETS FOR SCAN 29 RID B TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 2726 9 48:8400S +10:43 36600 12150127*8 /2 4366 16 51:590US 11+43 8200 12150127*8 /2 4366 16 51:590US 11+43 8200 12150128+1 4 4366 9 51+770US +6+35 10700 12150128+1 4 4366 9 51+770US +6+35 10700 12150128+1 1 12:50:27*9 TVAN HIT 38 BCT+01259353*9US AACAACAA SCP 4+000S SCN 82 PRP3999US SLS 827 785 597 NIN 95 04L 10200FT ANNI37*98 ACH143*35 RID G INTERNAL TIE+8REAKER CLOCK DIHER ALT 0HN ALT 0THER 0HN TAUD TAUL TAU2 TAU2P BITS STATUS 1 4366 401+689 10700 10200 000 010 38,258 38+258 +1*863 +1*863 0001 21 TARGETS FOR SCAN 82 RID G TID BCD NRP TOA DAZ TAL LTRN GTRN TIME TARGETS FOR SCAN 82 RID G TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 1635 15 1*830US 9*42 8200 12150129+0 TARGETS FOR SCAN 82 RID G TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 1635 15 1*830US 9*42 8200 12150129+0 SLS 0/ 3* 598 NIN 24 0AL 10200FT ANN TARGETS FOR SCAN 75 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79*380US *00 10700 3 12148132+1 TARGETS FOR SCAN 75 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79*380US *00 10700 3 12148132+1 TARGETS FOR SCAN 95 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79*380US *00 10700 3 12148132+1 TARGETS FOR SCAN 95 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79*380US *00 10700 3 12148132+1 TARGETS FOR SCAN 95 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME TARGETS FOR SCAN 75 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79*380US *00 10700 3 12148132+1		CCN 29 0002625	US			
JULY STANDER TID BCD NRP Y84 DAZ TAL LIRN GIRN TIME V1 2726 Y48.840US 10:43 34600 12150127.8 V2 4366 16 51:590US 14:476 10700 64 12150127.8 V2 4366 9 51:490US 11:43 34200 12150123.1 4 4366 9 51:770US -6:35 10700 12:50:27.9 TVAN HIT 38 BCT+01259353.9US AACAACAAA SCP 4:000S SCN 82 PR93999US SLS B277 88: 597 NIN 95 UAL 10200FT AWN137:98 ACH143:35 RID G 12:50:27.9 TVAN HIT 38 BCT+01259353.9US AACAACAAA SCP 4:000S SCN 82 PR93999US SLS B277 88: 597 NIN 95 UAL 10200FT AWN137:98 ACH143:35 RID G 12:50:27.9 TL CLOCK TITERNAL DIXX:5XA PREDICTED TIME UNTIL ALARM ISECI NADAR THREAT CLOCK GTRN BCD SECI 0 14:806 10:200 ND 10:00 14:00 14:00 14:00 1 4366 10700	ASK4 HIT 11 BLT4003236774005 ARCARLAG SCF 34923	4143+26 RID B				
V1 2726 9 48.8000 12150127.8 V2 4366 16 51.590US +14.76 10700 64 1 12150127.8 3 1635 17 51.490US 11.413 8200 12150128.1 4 4366 9 51.770US +6.35 10700 12150128.1 4 4366 9 51.770US +6.35 10700 12150128.1 5US 8277 88.597 NIN 95 0AL 10200FT AWN137.98 ACH1439.35 RID 6 INTERNAL T1E-BREAKER D17XC,XA PREDICTED TIME UNTIL ALARM (SEC) RAUAR CLBCK D17XC,XA PREDICTED TIME UNTIL ALARM (SEC) RAUAR THREAT CLBCK D17XC,XA PREDICTED TIME UNTIL ALARM (SEC) RAUAR THREAT TABE 010200 000 010 38.258 38.258 -1.863 0001 21 1 4366 401.689 10700 10200 000 010 38.258 38.258 -1.863 -1.863 0001 21 1 4366 401.689 10700 10200 000 10200 10200 10200 10200 10200 12150129.0	TARGETS FOR SCAN 29 RID B TID BCD NRP YOA	DAZ TAL	LTRN GTRN	TIME		
V1 2/20 5 4 4366 16 51.5900US +14.76 10700 64 1 12:50:27.8 3 1635 17 51.4900US 11.43 8200 12:50:28.1 4 4366 9 51.770US +6.35 10700 12:50:27.9 TVAN HIT 38 BCT401259353.9US AACAACAA SCP 4.000S SCN 82 PRP3999US SUS 8277 88 597 NIN 95 UAL 10200FT AWN137.9B ACH143.35 RID G INTERNAL CLOCK DI.XC.XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CLOCK DI.XC.XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CLOCK DI.XC.XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CLOCK DI.XC.XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CLOCK DI.XC.XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK TARETR MAL T			12150:	27.8		
3 1635 17 51:49005 11:43 8200 12:50:28:1 4 4366 9 51:77005 +6:35 10700 12:50:27:9 TVAN HIT 38 BCT401259353:9US AACAACAA SCP 4:0005 SCN 82 PR93999US SLS 82:77 88:597 NN 95 BAL 10200FT AWN137:98 ACH143:35 RID G INTERNAL 11:625 01:7C:7X PREDICTED TIME <until< td=""> ALARM (SEC) 81TS STATUS GTRN BCD (SEC) 81HER ALT 0WN ALT 0THER 000 14:43:35 14:363 -1:863 0001 21 1 4:366 401:689 10700 10200 000 010 38:258 38:258 -1:863 0001 21 1 4:366 401:689 10700 10200 000 010 38:258 -1:863 -1:863 0001 21 1 1:4365 1:6 75 PR93000US -1:2150129:0 -1:2150129:0 -1:2150129:0</until<>		5 •14•76 10700	64 1 12:50:	27.8		
4 4366 9 51.770US -6.35 10700 12:50:27.9 TVAN HIT 38 BCT+01259353.9US AACAACAA SCP 4.000S SCN 82 PR93999US SLS 8277 88-597 NIN 95 84L 10200FT AWN137.98 ACH143.35 RID 6 INTERNÁL TIE-BREAKER GTRN BCD (SEC) ØIHER ALT ØHN ALT ØTHER ØWN TAU0 TAU0 TAU1 TAGETS POR SCAN 82 RID G 10200 NO 10200 NO 010 NO 12:50:27.0 BITS STATUS GTRN BCD GSEC) ØIHER ALT ØHN ALT ØTHER ØWN TAU0 TAU0 TAU2 TAU2 TAU2 TVAN MAXIMUM RATE 2000 FT/MIN UP TARGETS POR SCAN 82 RID G TID BCD NRP TOR DAZ TARGETS POR SCAN 82 RID G TID BCD NRP TARGETS POR SCAN 75 PR9300005 SLS 0/ 3e 598 NIN 24 0AL 10200FT ANN TARGETS POR SCAN 75 RID K TID BCD NRP TARGETS POR SCAN 75 RID K TID BCD NRP TARGETS POR SCAN 75 RID K TID BCD NRP <	3 1635 17 51.490	\$ 11.43 8200	12:50:	28.1		
TVAN HIT 38 BCT401259353.9US AACAACAA SCP 4.000S SCN 82 PRP3999US SLS 8277 88.597 NIN 95 UAL 10200FT AWN137.9B ACH143.35 RID G INTERNAL TIE-BREAKER GTRN BCD (SEC) 01HER ALT 0HN ALT 0THER 0WN TAU0 TAU1 TAU2 TAU2P BITS STATUS I 4366 401.689 10700 10200 000 010 38.258 38.258 1.863 -1.863 0001 21 TARGETS FOR SCAN 82 RID G TID BCD NRP T6A DAZ TAL LTRN GTRN TIME 1 1635 15 1.830US 9.42 8200 12150129.0 12150129.0 0WN HIT 24 BCT284509061.1US 000 ACH143.35 RID K TAL LTRN GTRN TIME 1 1635 15 1.830US 9.42 8200 12150129.0 0WN HIT 24 BCT284509061.1US 000 ACH143.35 RID K TAL LTRN GTRN TIME 1 1635 15 1.830US 9.42 8200 12150129.0 0WN HIT 24 BCT284509061.1US 000 ACH143.35 RID K TAL LTRN GTRN <td>4 4366 9 51+770</td> <td>5 -6-35 10700</td> <td>12:50:</td> <td>27•9</td> <td></td> <td></td>	4 4366 9 51+770	5 -6-35 10700	12:50:	27•9		
SLS 8277 88* 597 NIN 95 GAL 10200FT AWN137:98 ACH143:35 RID G INTERNAL TIE-BREAKER CLOCK DI;XC;XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT GTRN BCD (SEC) 0THER ALT 0WN ALT 0THER 0WN TAU0 TAU1 TAU2 TAU2P BITS STATUS I 4366 401.0689 10700 10200 000 010 38.258 38.258 1.863 -1.863 0001 21 I 4366 401.0689 10700 10200 000 010 38.258 1.863 -1.863 0001 21 NOT URN MAXIMUM RATE 2000 FT7MIN UP TARGETS FOR SCAN 82 RID G TID BCO NRP TOA DAZ TAL LTRN GTRN TIME I 1635 15 1.830US 9:42 8200 12150129:0 SUN HIT 24 BCT284509061:1US 000000005 SLS 0/ 3.598 NN 40AL 10200FT AWN 00 ACH143:35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP TBA DAZ TAL LTRN GTRN<	TVAN HIT 38 BCT401259353.9US AACAACAA SCP 4.000	SCN 82 PRP3999	US			
INTERNAL TILEBREAKER CLOCK DIAC,XA PREDICTED TIME UNTIL ALARM (SEC) RADAR THREAT GTRN BCD (SEC) 0THER ALT 0WN ALT 0THER OWN TAU0 TAU1 TAU2 TAU2P BITS STATUS 1 4366 401+689 10700 10200 000 010 38+258 38+258 -1+863 0001 21 N0 TURN MAXIMUM RATE 2000 FT/MIN PREDICTED TO BCO TAU TAU2 1+863 0001 21 N0 TURN MAXIMUM RATE 2000 FT/MIN PREDICTED TO BCO TAU TAU TAU2 1+863 0001 21 TARGETS FOR SCAN 82 RID G TID BCO NRP TOA DAZ TAL LTRN GTRN TIME I 1635 15 1+830US 9+42 8200 12150129+0 12150129+0 SUN HIT 24 BCT284509061+1US 00080000 SCP 2+499S SCN 75 PRP30000US 12148132+1 SLS 0/ 3-598 NIN 24 0AL 10200FT AWN 00ACH143+35 RID <td< td=""><td>SLS 8277 88- 597 NIN 95 BAL 10200FT AWN137-98 AU</td><td>H143+35 RID G</td><td></td><td></td><td></td><td></td></td<>	SLS 8277 88- 597 NIN 95 BAL 10200FT AWN137-98 AU	H143+35 RID G				
GTRN BCD (SEC) 01HER ALT 0THER 000 TAU0 TAU2 TAU2 TAU2P BITS STATUS 1 4366 401.689 10700 10200 000 010 38.258 38.258 -1.863 -1.863 0001 21 NØ TURN MAXIMUM RATE 2000 FT7HIN UP TARGETS FOR SCAN 82 RID TID BCD NRP TBA DAZ TAL LTRN GTRN TIME		XA PREDICTED	TIME UNTIL ALARM	(SEC) RA	DAR THREAT	
1 4366 401.689 10700 10200 000 010 38.258 38.258 -1.863 -1.863 0001 21 NØ TURN MAXIMUM RATE 2000 FT7MIN UP TARGETS POR SCAN 82 RID G TID BCD NRP TOA DAZ TAL LTRN GTRN TIME I 1635 15 1.830US 9.42 8200 12150129.0 OWN HIT 24 BCT284509061.1US 000000000 SCP 2.4995 SCN 75 PRP30000US SLS 0/ 3.598 NIN 24 0AL 10200FT AWN 00 ACH143.35 RID K TARGETS POR SCAN 75 RID K TARGETS POR SCAN 75 RID K TIME I 14365 16 79.380US I 2148:32.1 I 100 K I 100 K I 100 K I 2148:32.1 I 100 K I 2148:32.1 I 2148:32.1	GTRN BCD (SEC) OTHER ALT OWN ALT OTHER	OWN TAUD	TAU1 TAU2	TAU2P B	ITS STATUS	
1 4366 401.689 10700 10200 000 010 36.256 58.258 51.055 0.000 010 36.256 58.258 51.055 0.000 010 10.000 010 36.256 58.258 51.055 0.000 010 36.256 58.258 51.055 0.000 010 10.000 010 10.000 010 10.000 010 000 010 10.000 010 000 010 10.000 010 000 010 10.000 010 000 010 10.000 010 000 10.000 010 000 10.000 010 000 10.000 010 000 10.000 000 10.000 000 10.000 000 000 10.000 000 10.000 000 10.000 000 10.000 000 10.000 000 10.000 10.000 000 10.000 10.000 000 10.000 000 10.000 000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000			29.259 -1.863	-1.863 0	001 21	
TARGETS FOR SCAN 82 RID G TID BCD NRP TOA DA2 TAL LTRN GTRN TIME 1 1635 15 1.830US 9.42 8200 12150129.0 0wN HIT 24 BCT284509061.1US 000060808 SCP 2:4995 SCN 75 PRP30000US SLS 0/ 3.598 NIN 24 0AL 10200FT AWN .00 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 79:380US :00 10700 3 12148:32.1	1 4366 401+689 10700 10200 000	MAXIMUM RATE	2000 FT7MIN UP			
TARGETS FOR SCAN B2 RID G TID BCO NRP TOA DA2 TAL LIRN GIRN TIME I 1635 15 1.830US 9.42 8200 12150129.0 OWN HIT 24 BCT284509061.1US 000086000 SCP 2:4995 SCN 75 PRP30000US SLS 0/ 3.598 NIN 24 0AL 10200FT AWN .00 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP TOA DA2 TAL LIRN GIRN TIME 1 4366 16 79.380US .00 10700 3 12148132.1		_				
1 1635 15 1+830US 9+82 8200 12150129+0 0WN H1T 24 BCT284509061+1US 060808080 SCP 2+4995 SCN 75 PRP3000US SLS 0/ 3+ 598 NIN 24 0AL 10200FT AWN +00 ACH143+35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP T6A DAZ TAL TRN TIME 1 4366 16 79+380US +00 10700 3 12148:32+1	TARGETS FOR SCAN 82 RID G TID BCD NRP TOA	DAZ TAL	LTRN GTRN	TIME		
0WN HIT 24 BCT284509061.1US 0000000 SCP 2.4995 SCN 75 PRP30000US SLS 0/ 3. 598 NIN 24 0AL 10200FT AWN .00 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TID BCD NRP T0A DAZ TAL LTRN GTRN TIME 1 4365 16 79.38005 .00 10700 3		s 9+42 8200-	121501	29.0		
OWN HIT 24 BCT284509061-1US OG000000 SCP 2:4995 SCN 75 PRP300005 SLS 0/ 3.598 NIN 24 0AL 10200FT AWN +00 ACH143.35 RID K TARGETS FOR SCAN 75 RID K TAL TAN TIME 1 4366 16 79:38005 +00 10700 3 12:48:32:1						
TARGETS FOR SCAN 75 RID K TID BED NRP TOA DAZ TAL LTRN GTRN TIME 1 4366 16 797380US +00 10700 3 12148:32+1		50N 75 PKP3000	00			
1 4366 16 797380US +00 10700 3 12148:32+1	SLS U/ JO DOO NIN 24 DAL LUCUUFI AWN OUU A TARAFTS FOR SCAN 75 RIN K TID BED NRP TOA	DAZ TAL	LTRN GTRN	TIME		
$\frac{1}{1} \frac{1}{4366} \frac{16}{16} \frac{79}{338005} \frac{10700}{10700} \frac{3}{3} \frac{12}{148} \frac{1}{36} \frac{1}{12} \frac{1}$			****			
ELCURE F O LCAS OULCY LOOY DEOCDAM OUTDUT	1 4365 16 79+380	5 00 10700	3 12148	32+1		
FILINE SEVELLAN THAN THILLY TANDA PROVIDENT	ETCUDE $C = 0$		LOOK PROGRAM	OUTPUT		

FIGURE 5-9. (CONTINUED)

	ніт — ніт	14 BC 39 BC INTERN	1402 1403 KL	289506 167511	005 11505	CACACA	CA SI	CP 9.3985 C P18.7735 TIE-BREAK	SCN SCN (ER	0 PRP443 0 PRP182	8US 3US-1!	904 23	18-588	7 2257 186	4 1924 31	.59
GTRN	BCD	(SEC	;	OTHER	ALT	OWN A	LT	D17XC2 OTHER	8WN	PREDICTE TAUO	D"TIMI T/	E UNTI AU1	L ALAR	M (SEC)	BITS	THRE STAT
1	4366	404.	50	10	700	102	00	000 NO TURN	010 MA)	35.797	35.3 E 2000	797 D FT7F	4.324	•4•324	0001	
OWN	ніт	24 BC	401	758965		800000	00 S(P 2.4995	SCN 7	6 PRP300	OUS					
TARG	TŞ FOI	R SCAN	76	BID K	TI	0200FT D BCD	NRP	+00 ACF 78A	1143+35 DA	Z TAL	LTRN	GTRN		TIME		
						1 2621	7	70.61005		0 42800			12150	129+4		
						2 6413 3 4366	12 13	74+85005	•0	0 8200	3		12:50	:29+4		
TARGE	TS FOF	R SCAN	30	RID B		D BCD 1 4366 2 4366 3 2726 4 1635	NRP 20 8 10 13	18A 48+610Us 48+790Us 50+750Us 54+060Us	DA -14-3 -5-8 -8-8 12-0	Z TAL 8 10600 6 10600 9 *****	LTRN 64	GTRN 1	12:50 12:50 12:50 12:50	TIME 31.7 31.8 31.8 31.8 32.0		
	M11	34 80	4044	234470	•905	AACAAC	AA SC	P18.7115	SCN SCN 8	0 PRP322	2US 9US					
TVAN	HIT	28 BC			÷ .											
TVAN SLS 8	HIT 557 8 4366	28 BC 2= 595 406•6	-NII 49	95 10	BAL 1 600	0200FT 102	AWN]	37•72 ACH 000 NO TURN	143+35 010 MAX	RID G 32.651 IMUM RATI	32.6 2000	51 • FT/M	7.222 IN UP	•7•222	0001	
TVAN SLS 8 1 TARGE	HIT 557 8 4366 TS F8R	28 BC	-NII 49	10 RID G	BAL 1 600	0200FT 102 D BCD		37.72 ACH 000 NO TURN TURN	143-35 010 MAX	RID G 32.651 Imum Rati	32.6 2000	51 • FT/M	7.222 IN UP	•7•222 TIME	0001	
TVAN SLS 8 1	HIT 1557 8 4366 TS F8R	28 BC 20 59 406.6 SCAN	83	10 RID G	BAL 1 600	0200FT 102 D BCD 1 1635 2 1635	NRP	37.72 ACH 000 NØ TURN TURN 2.260US 2.400US	143-35 010 MAX DA 7-8 13-3	RID G 32.651 IMUM RATI Z TAL 3 8200 5 8200	32.6 2000	S1 FT/M GTRN	7.222 IN UP	•7•222 TIME ••••	0001	ê
TVAN SLS 8 1	HIT 1557 8 4366 TS F8R	28 BC 2 593 406.6 SCAN	83	RID G	BAL 1 600	0200FT 102 D BCD 1 1635 2 1635 3 2521	NRP	137-72 ACH 000 NØ TURN 20260US 20400US 600-460US	143-35 010 HAX DA 7-8 13-3 5-6	RID G 32.651 IMUM RATI Z TAL 3 8200 5 8200 3 33800	32.6 2000	51 • FT/M GTRN	7.222 IN UP 12150 12150 12150	•7•222 TIME 32•9 33•0 32•9	0001	
TVAN SLS 8 1 TARGE	HIT 1557 8 4366 TS F8R	28 BC 12 595 406.6 SCAN	-NII 	10 RID G	BAL 1 600	0200FT 102 D BCD 1 1635 2 1635 3 2521 4 6413 5 4366	AWN] 00 NRP 18 7 13 7 13	37.72 ACH 000 NØ TURN 20260US 20400US 60.460US 72.110US 73.540US	143-35 010 MAX DA •• 7*8 13-3 5*6 6*2 **8	RID G 32.651 IMUM RATI 2 TAL 3 8200 5 8200 3 33800 1 ***** 4 10500	32.6 2000 LTRN 7-9-	51 • FT/M GTRN 	7.222 IN UP 12:50 12:50 12:50 12:50 12:50	•7•222 TIME 32•9 33•0 32•9 32•9 32•9 32•9	0001	
TVAN SLS E 1 TARGE	HIT 1557 8 4366 TS FBR	28 BC 12- 593 406+6 SCAN 24- BCT 6- 597	4042 NII	* 95 - 10 * 10 G 	905 001	0200FT 102 0 BCD 1635 2 1635 3 2521 4 6413 5 4366 800000FT	AWN 00 NRP 18 7 13 7 13 7 13 7 13 60 SC AWN	37.72 ACH 000 NØ TURN 18A 2.260US 2.400US 60.460US 72.110US 73.540US 9.2.499S .00 ACH	143-35 010 MAX DA 7-8 13-3 5-6 6-2 4-8 5-6 5-7 143-61	RID G 32.651 IMUM RATI Z TAL 3 8200 5 8200 3 33800 1 ***** 4 10600 7 PRP3000 RID K	32.6 2000 LTRN 	51 • FT/M GTRN	7.222 IN UP 12150 12150 12150 12150 12150	•7•222 TIME •••• 32•9 33•0 (32•9 32•9 32•9 (32•9 (32•9	0001	

•

•

Tables 5-17a through 5-17f enumerate just six of the runs that were analyzed and contain entries of selected ASR-4 data of OTHER as processed by BCAS detailed processing program and the widened azimuth window program on a scan for scan basis. Information in the table for BCAS includes scan number, DAZ, number of replies, TOA, altitude difference, local track number and time. Data from the widened azimuth window program consists of DAZ, TOA, range, scan number, run length, number of transponder repies and time.

It may be seen in the table entries that DAZ and TOA values of OWN for BCAS and ARTS III are within acceptable tolerances, considering the inaccuracies associated with ARTS III positioning of OWN and OTHER.

Tables 5-17a and 5-17b contain a number of false reports of OTHER (i.e., target reports for a given scan, the second entry for the scans identified by letter F) that were detected by BCAS but were not evidenced in the widened azimuth window program listing.

Further inspection of the detailed processing listings (Figure 5-10) with the flight history listings, (Figure 5-7) also shows reports for OTHER on the same scans (i.e., 2 target reports from the same scan). However, ARTS III (see Figure 5-7) indicates, for example, that OTHER is at an azimuth of 207.86°, with a false target report for OTHER appearing at 136.23° which is well outside the ±18° widened azimuth window. BCAS in turn detects the false target (see Figure 5-9) but states that it is within the ±18° widened azimuth window. Additional tests in strong multipath and a check on omni antenna radiating pattern alignment with the main beam pattern may explain false target presence in BCAS and ARTS III measurements.

Analysis of data reduction output listings indicated that aircraft appearing within $\pm 15.0^\circ$ of OWN as defined by ARTS III were all accountable for with respect to those aircraft detected by BCAS when locked to the ASR-4 radar. Acutally there were more aircraft detected by ARTS III but these additional aircraft were outside of BCAS's volume of interest due to either altitude or range differences. The converse of this was also true, viz., there were

LCAS DETAILED PROCESSING PROGRAM RADAR/TARGET LISTING

DATE 22 JUN 1977 PAGE 0016

11

		CL BCK			TIE-BREA	KER		_ =	•			
GTRN	BCD	TSECT	OTHER ALT	HUN AT T			PREDICTED	TIME UNTI	L ALARM	(SEC)	RADAR	THREAT
	***	*******					TAUD	TAUL	SUAT	TAUZP	BITS	STATUS
1	4216	172+426	8800	10000	000	000	130.729 AXIMUM RATE	130.729-22 2000 FT/M	1.025.1 In Dawn	55.711	1010	C8
5	4216	172.426	8800	10000	000	000	-20.212	-20.212 -4	1.717 -	41•717	1000	06
- 3	4216	172.436	8800	10000		000 M	+18-597	-18+597 -3 2000 FT/M	9+883 +	39•883	1000	
4	4216	172,436	8800	10000	000	000	-13.750	13.750 -3	6•082 •	36•082	1000	06
1	4216	174.717	8800	10000	000	000 M	130.738 1 AXIMUM RATE	2000 FT/M 30-738-22 2000 FT/M	IN DOWN 3.305.1! In Down	55.702	1010	05
2	4216	174+717	8800	10000	000	000	-22.502 ·	-22.502 -4	+•007 •·	44•007	1000	06
3	4216	174.725	8800	10000	000	000 M	+20+887 • AXIMUM RATE	2000 FT/H	-173 -4	20173	1000	- 05
4 4	4216	174.726	8800	10000	000	000 H	+16+041 =	16.041 .3	3.372 .	38•372	1000	06
5 4	4216	174+735	8800	10000	-000-	-000 M	130.710 1 AXIMUM RATE	30.710 51 2000 FT/M	-793 - 1 N DOWN	8.793	1000	
1 4	4216	177.206	8800	10000	000	000 M	130.738 1	30.738-19	-614-15	5.702	1010	06
-2-4	216	177+216	8800	10000	000	000 M	-25.002 -	25.002 .46	-506 -4 N DOWN	5.506	1000	06
34	216	177.216	8800	10000	000	000	-23.377 -	23.377 .44	•663 •4	4•663	1000	06
-4-4	216	177.216	8800	10000		-000	-18-530 -	18-530 -40 2000 FT/M	+862 +4	0+862	1000	06
54	216	177.225	8800	10000	000	000	116.075 1	16.075 41	•460 4	1+460	1000	00

FIGURE 5-10. MULTIPLE GLOBAL TRACKS OF OTHER

TABLE 5-17. COMPARATIVE DATA ASR-4 VS. BCAS

	SCAN	Ħ	DAZ	NRP	TOA	Alt. Diff.	LTRN	GLBTR	DAZ	TOA	RANGE	SCAN #	TIME
F*	27	21	-15.80	15	57.54	+600'	64	12/50/19.9	-17.05	58.09	7.34	19	12/50/19.19
		13	-8.41	9									
	28	17 14	-15.95	15	54.54	+500'	64	12/50/23.8	-16.17	54.97	6.96	20 [.]	12/50/23.12
F	29	17	-14.76	16	51.59	+500'	64	12/50/27.8	-14.94	51.43	6.45	21	12/50/27.05
		12	-6.35	9									
F	30	18	-14.38	20	48.61	+400'	64	12/50/35.6	-14.06	48.31	6.07	22	12/50/30.98
		15											
	31	12	-15.92	15	45.65	+400'	64	12/50/35.6	-14.06	48.31	6.07	23	12/50/34.91
		13											
F	32	18	-12.41	20	42.55	+400'	66	12/50/39.6	-12.48	42.39	5.36	24	12/50/38.85
		11											
F	33	21	-12.40	18	39.69	+300'	66	12/50/43.5	-11.07	38.98	4.81	25	12/50/42.79
		12	-2,96	6									
F	34	18	-14.67	12	36.83	+300'	66	12/50/47.4	-10.64	36.91	4.60	26	12/50/46.72
		7	-2.05	7									

***F** false target (i.e. multiple target of OWN) detected by BCAS.

11/18 RUN 1

TABLE 5-17. COMPARATIVE DATA ASR-4 VS. BCAS (CONTINUED)

	SCAN #	DAZ	NEP	TOA	LTRN	TIME	DAZ	TOA	RANGE	SCAN #	RL	HITS	TIME
	4	-15.60	9	53.82	1	13/24/46.8	-15.99	53.89	6.85	17	18	17	13/24/41.1
	5	-14.43	6	50.91	1	13/24/45.8	-14.41	49.52	6.20	18	19	14	13/24/45.0
F	6	-14.88	15	48.05	1	13/24/49.7	-13.98	47.46	6.00	19	21	19	13/24/49.0
		-5.39	8										
	7	-13.04	15	45.11	1	13/24/53.6	-13.10	44.79	5.63	20	19	18	13/24/56.8
	8	-11.89	18	42.12	1	13/24/57.6	-11.95	41.57	5.17	21	22	22	13/24/56.8
F	9	-11.91	12	39.08	1	13/25/1.5	-11.16	39.12	4.83	22	20	18	13/25/0.8
		-12.12	11	45.24									
	10	-10.31	17	36.07	1	13/25/5.4	-10.55	36.10	4.53	23	19	18	13/25/4.7
		10	ost lo	ck on ASI	R-4						•		
	2	-9.03	19	14.80	28	13/25/33.0	-4.48	16.83	2.16	30	19	12	13/25/32.6
F	3	-4.42	18	11.54	33	13/25/37.0	-3.78	14.37	1.89	31	19	16	13/25/36.3
		-9.29	9	11.83									
	4	-5.15	14	8.53	28	13/25/40.9	-3.34	12.73	1.81	32	18	14	13/25/40.2
	5	-3.71	15	5.48	28	13/25/44.8		no target	report	for OWN	this	scan	
	6	-0.42	14	2.17	28	13/25/48.8		no target	report	for OTH	ER thi	.s scan	

11/18 RUN 3

126

,

.

TABLE 5-17. COMPARATIVE DATA ASR-4 VS. BCAS (CONTINUED)

SCAN #	DAZ	NRP	TOA	LTRN	TIME	DAZ	TOA	RANGE	SCAN #	RL	HITS	TIME
7	-14.18	17	8.33	98	13/13/42.5	-14.24	8.79	3.05	9	22	15	13/13/42.2
8	-13.51	13	8.48	98	13/13/46.4	-14.06	8.78	3.05	10	21	15	13/13/46.2
9	-13.05	12	8.55	98	13/13/50.4	-13.80	8,99	3.02	11	17	16	13/13/50.1
10	-13.00	12	8.33	98	13/13/54.3	-13.01	8.38	2.92	12	16	15	13/13/54.0
11	-12.54	19	8.00	98	13/13/58.2	-12.39	8.35	2.79	13	22	20	13/13/57.9
12	-12.29	19	7.63	98	13/14/02.1	-11.69	7.64	2.74	14	25	23	13/14/01.9
13	-11.80	18	7.20	98	13/14/06.1	-11.60	7.74	2.75	15	22	22	13/14/05.8
14	-11.05	11	6.85	98	13/14/10.0	-10.72	6.97	2.63	16	16	16	13/14/0.97
15	-11.28	18	6.50	98	13/14/13.9	-11.16	7.60	2.73	17	23	23	13/14/13.6
16	-9.45	14	5.98	98	13/14/17.9	-10.20	6.92	2.56	18	27	20	13/14/17.5
17	-8.92	18	5.60	98	13/14/21.8	-9.316	6.17	2.44	19	21	18	13/14/21.5
18	-8.50	20	5.26	98	13/14/25.8	-8.26	5.20	2.28	20	21	19	13/14/25.4

.

11/17 RUN 3

127

6ZT

.

TABLE 5-17.	COMPARATIVE	DATA	ASR-4 VS	. BCAS	(CONTINUED)
,			•		

SCAN #	DAZ	NRP	TOA	LTRN	TIME	DAZ	TOA	RANGE	SCAN #	RL	HITS	TIME
3	3.74	8	20.24	119	13/49/21.9	3.52	20.81	1,93	49	19	13	13/49/21.4
4	5.14	10	21.32	119	13/49/25.9	4.31	24.07	2.27	50	14	11	13/49/25.5
5	3.82	16	22.49	119	13/49/29.8	4.13	23.86	2.24	51	15	. 14	13/49/29.4
6	4.17	15	23.58	119	13/49/33.8	3.96	24.31	2.25	52	13	13	13/49/33.4
7	3.24	20	24.71	119	13/49/37.7	3.34	24.87	2.21	53	18	17	13/49/37.3

11/17 RUN 7

.

.

130

,

•

no false alarms detected by BCAS other than the multiple false targets of OTHER that have previously been discussed. Assessments of the output listings did not detect any missed tracks. However, there were many multiple global tracks of OTHER (see Figure 5-10) that appeared throughout the test runs. These multiple global tracks could have been generated for a variety of reasons. A faulty or marginal transponder could be the cause of false targets/false tracks. The aforementioned false targets of OTHER resulted in multiple global tracks. Perhaps the algorithm used in the software is heavily oriented to negating missed alarms/missed tracks and thus may inadvertently be conducive to false targets/false tracks. In any such event, additional testing is recommended in order to investigate OTHER's false target anomaly and also to investigate the predominance of false tracks.

5.15 SYNCHRONOUS GARBLE

Synchronous garble flight testing performed on the passive BCAS consisted of measuring both synchronous and self garble interference with the system. The tests involved two aircraft and a fixed target atop a fire tower. The observing aircraft, referred to as OWN, maintained a constant radius in flying a circular pattern about the fixed target. The second aircraft flew inbound and outbound radials inside the orbit along the center line of the antenna beam passing through the fixed ground target.

Self garble interference with both targets on the radial regardless of their radial separation distance is observed by OWN when the major axis of the ellipsoid coincides with the line of position on the radial; all three targets are within the antenna's main beam. Synchronous garble interference is observed when the fixed transponder reply and the reply from the aircraft flying the radial are within $\pm 20.3\mu$ sec separation; the OWN is outside the antenna main beam but within the widened azimuth window.

By definition, self garble interference is observed when the BCAS itself, is replying to a ground interrogator, during the 20.3μ second interval and the intruder replies arrive in coincidence.

Synchronous garble is generic to ATCRBS and is caused by interference of two aircraft replying in coincidence with their message length occurring at the same time as the receiver and OWN aircraft is taking a measurement. The difference in both signal arrivals is within +20.3µsec interval.

BCAS synchronous garble tests were conducted at NAFEC. Two aircraft and the fire tower at MIZPAH were employed. One aircraft was instructed to fly outbound and inbound radials to the ASR-5 on a 293.6° azimuth heading. At a distance of 12.3 nautical miles from the radar, the aircraft was positioned over the stable transponder affixed to the fire tower at MIZPAH. See Figure 5-11. While this aircraft flew a prescribed radial pattern, the other designated air craft would fly the circular pattern about the fire tower with the radius designated as five nautical miles.

Beacon codes were assigned to the three targets of interest. For the radial aircraft code assignment was 0302. The orbiting aircraft code assignment was 301, while the MIZPAH tower transponder was designated 1270.

Subjective evaluation of the flight testing can be accomplished with data reduction software at a later date.

Two examples of pictorial representation that can be employed are a plot depicting the receipt of the targets at MIZPAH and radial aircraft as missing, garbled, or present (received), Figure 5-13.

Another source is listings Figure 5-12, and Figure 5-13 that delineate the targets of interest by scan, beacon code, TOA, DAZ, and number of replies. The listings also indicate whether the "X" or "SPI" pulses in the reply train were set inadvertently, Figure 5-12.

5.16 EXPERIMENTAL BCAS THREAT LOGIC

5.16.1 Threat Logic Description

The threat logic of the experimental BCAS is more complex than ANTC-117 logic specified for independent airborne collision avoidance systems. The basic threat criterion in ANTC-117 is TAU, the ratio

FIGURE 5-11. SYNCHRONOUS GARBLE FLIGHT TEST PATTERN

(SCAN)	BEACON (1372(G)	NREPLY	TOA	DAE 12.43	4600	LTRN 55	TIME 12151; 6.6
		FIRS	0302	<u>2 is</u> Missin	IG SECON	DEACON	
DAE		TOA	BLACUN			BEAUEI	
		71250	-1270	· · · · ·			
14.16		7 250	(372X)	Code 1270	Garbled	l and "X"	Bit in
11.84		71105	1272X	The Deply	Mossage	was Set	
12.29		7 . 250	1370X	the vehic	Message	, Mus 000	
12.51		71250	1372X				
12.96		71250	13/2X				
13.18		7:250	13/28				
13.63	· · · · · · · · · · · · · · · · · · ·	/1250	19,54		• • • •		
		· _ · · · · · ·		х и			
13.86		7:250	1372x				· -
14.31		71105	1370x				
14.53		71250	0302X				
14.98		71250	6302X				
SCAN	AL ALON	NREPL	TOA	DA2	TAL	J TRN 54	12151111.3
	(1270)				4900	55	12151111.3
213	0302	FIR	ST		SECO	ND	
DAE		TOA	BEACON		TOA	BEACON	
11.26		🗲 Both (Codes Det	tected 📲	1555	0302	
11.48			4070 ·	8	100	0302	
11.93		8:120	12/0		A46		
12.10		01207	1270		.558	0202	
12.60		717/2	1270		700	- Ø 3 Ø Ø	
12.03		A.120	1270	-	-		
		7.975	1270	8	555	0202	
13.95		71975	1270	8	.555	6966	
		81120	1270				
14.63		8 120	1270				"SPI" Bit is Set
14.85		8,410	3330SP1	8	.418	330SP	
15.30		-	_		700	0302	
15.52					700	0302	

FIGURE 5-12. FLIGHT DATA INFORMATION-SCAN 212

134

,

.

	202									
_	671	SCAN	BEACON	NPEPLY	TQA	DAZ	TÁL	LIRN	TIME	
	853	309	6597	11	12,380	18,33	3540	25	14;26;28,8	
	872			FIRS	Ť		SECO	D		
		<u> </u>		TOA	BEACON		TOA	BEACON		
	855	17.42	10	+295	6507			•		
	855	17,68	10	1295	6507					
	855	18,12	10	,295	6507			•	•	
	855	18,35	10	1295	6507				······	
	855	18.79	10	1440	6507				·	
	855	19,40	10	. 441	050/		`			
	855	19,91	- 10	.440	4740					
	202	1.414 1.				N13			TIME	
	8/1	27A	BEAGUN	NREPLT	104	1 A 37	145	LINN De	14196133.6	
	023	370	<u>6507</u>	21	101040		SSUN SECOL	<u> </u>	1415010315	
	0/2			704	BEACON		T01	BEACON		
	Acc	UA6	• •	104	A SUT			DEALON		
	865	16.97	10	1730	6507					
		17 12		.737	6507		· · ·			
	855	17.57	10	.875	6507	-				
	855	17.79	10	.730	6507			·		
	855	18.24	10	730	6507					
	855	18.46	10	B75	6507			•		
	855	18,91	10	.730	6507	•				•
	855	19,13	10	1730	6507				T	
	855	19,58	10	1875	6507		•			
	855	19.80	10	1875	6507					
	855	20,48	10	1875	6507					
	855	20,92	10	1875	6507					
	855	21,15	10	.875	6547					
	2.2			_						•
	871	SCAN	BEACON	NREPLY	IOA	GAB	TAL	LIRN	TIME	
	853	371	6507	17	11.400	17,35	3500	25	14/20138.2	
	872			FIRS'	1		SECO	<u>vo</u>		
		DAC	•	TOA	HEACON		ĪON	BLACUN		
	855	15,78	11	1455	050/					
	877 855	10,60	11	1310	000/ 4547				-	
-		10,43	11	1777						
	077	17 42	11	340	4647					•
			11	1010						
	865	17 79	41	4455	6507					
	- 1955			7455	7507		·····			
	ARA	18 48	41	.310	6507					
			ر الم المستخدمات الم		÷. • • •					

.

FIGURE 5-14. BCAS SYNCHRONOUS GARBLE TEST LOWER PART

FIGURE 5-15, BCAS SYNCHRONOUS GARBLE TEST UPPER PART

137

of range to range-rate. When the BCAS is operating in the active mode (transmitting interrogations on 1030 MHz), it can obtain this same TAU. However, when the experimental BCAS is operating in the passive mode, it cannot obtain range or range-rate. Instead, it computes a number of TAU values based on the ratio of TOA to TOArate and differential azimuth to differential azimuth-rate for each locked radar.

The BCAS equipment evaluates the measured TOA and TOA change data for each radar and classifies that threat as shown in Figure 5-16. Similarly, the BCAS equipment evaluates the measured azimuth and azimuth change data for each radar and classifies the threat as shown in Figure 5-17. The values of the parameters specifying the TAU threat zones are shown in Table 5.16.1.

TAU ZONE	Tm (SECONDS)	To (SECONDS)	$\frac{1}{\text{SLOPE}}$ (SECONDS)
TAU-0	6.1		
TAU-1		3.0	25 + T
TAU-2		22.0	40 + T
TAU-2P		22.0	40 + T

TABLE 5-18. TAU THREAT ZONES

The TAU threat zones, in order of increasing severity of threat, are no threat, TAU-2, TAU-1, TAU-0. The threat category assigned to the target in the least severe of the categories determined by the individual measurements (TOA/TOA rate, DAZ/DAZ rate for each radar). The overall threat status of a given target is a combination of the threat based on essentially horizontal proximity and described by the TAU state and the altitude separation of OWN and the target. The BCAS generates an octal code for each threat state and outputs the code onto magnetic tape. The set of octal codes is defined in Table 5-19.

139

•

140

TABLE	5-19.	THREAT	CLASSIFICATION	CODE
-------	-------	--------	----------------	------

<u>Octal Code</u>	<u>Meaning (Threat Status)</u>
00	No Threat
02	TAU-1 or TAU-2; 1900' - 3300' below
03	TAU-1 or TAU-2, 1900' - 3300' above
04	TAU-1 or TAU-2, 1400' - 1800' below
05	TAU-1 or TAU-2, 1400' - 1800' above
06	TAU-1 or TAU-2, <1400' below; not co-altitude
07	TAU-1 or TAU-2, <1400' above; not co-altitude
12	TAU-1 or TAU-2, Pred. co-alt; 1900' - 1300' below
13	TAU-1 or TAU-2, Pred. co-alt; 1900' - 1300' above
14	TAU-1 or TAU-2, Pred. co-alt; 1400' - 1800' below
15	TAU-1 or TAU-2, Pred. co-alt; 1400' - 1800' above
16	TAU-1 or TAU-2, pred. co-alt; <1400' below
17	TAU-1 or TAU-2, pred. co-alt; <1400' above
20	TAU-2; Co-altitude below
21	TAU-2; Co-altitude above
22	TAU-2; Same Altitude
30	TAU-1; Co-altitude below
31	TAU-1; Co-altitude above
32	TAU-1; Same altitude

The experimental BCAS system has provision for specifying various combinations of active and passive operation and various choices of antennas. These are determined by specifying what is referred to as the I-code, consisting of 2 digits, of the form $ID_R D_A$. The digit D_R may be set to a value from 0 to 3. The BCAS will always interrogate in the active mode unless it is locked to more than D_R ground radars. The octal digit D_A determines antenna selection and the decision whether to initiate active interrogation if a threat is determined to exist. The significance of the D_A code bits is specified in Table 5-20.

D.	Interrogate on Threat	Ante Top	ennas Bottom	
-A				- do not interrogate
0	U	U	U	
1	0	0	1	- bottom antenna
2	0	1	0	- top antenna
3	0	1	1	- both antenna
4	1	0	0	- interrogate on threat
				(however, neither antenna
				is selected, hence no
				interrogation)
5	1	0	1	- bottom antenna
				interrogate on threat
6	1	1	0	- top antenna
				interrogate on threat
7	1	1	1	- both antennas; interrogate
				on threat

TABLE 5-20. INTERROGATOR AND ANTENNA ASSIGNMENTS

For the purpose of clarification, examples of possible interrogation modes are given as follows:

- IOO full passive; interrogator always OFF
- I33 full active; forced (both antennas)
- I23 active unless locked on 3 radars; then interrogator is always off
- I27 active unless locked on 3 radars; then interrogator is OFF, but will go active on threat (both antennas)
- I17 active unless locked on 2 or more radars; then interrogator is OFF, but will go active on threat (both antennas)
- I13 active unless locked on 2 or more radars; then interregator is always OFF (both antennas).

NOTE: active interrogation consists of

- 12 bursts with 3 or 6 millisecond intervals on top antenna
- 12 bursts with 3 or 6 millisecond intervals on bottom antenna

separated by 18.2 milliseconds between antenna switch-over and 2.5 seconds between the bursts.

5.16.2 Flight Patterns Used for the Threat Logic Tests

The BCAS threat logic was tested in the level flight encounters and in the climb-drive encounters. The latter patterns appeared to be more demanding on the performance of the threat logic, and therefore greater emphasis was given to this test.

Tests were conducted at NAFEC in the vicinity of Sea Isle Vortac by having radar coverage from the test van located at Newport, N.J. and the ASR-4 radar at NAFEC. The layout of the flight test patterns flown are shown in Figure 5-18.

FIGURE 5-18. TEST LAYOUT

Three flight patterns flown between altitudes of 9,000 and 11,000 feet were used in the BCAS test. These are:

<u>Pattern A</u>. In pattern A, the OWN aircraft was repeatedly flying figure eights along $30^{\circ}/210^{\circ}$ and $50^{\circ}/230^{\circ}$ at 10,000 feet altitude (Figure 5-19). Meanwhile, the OTHER performed parallel climb-dive flights between 9,000 and 11,000 feet altitudes.

LEVEL VS. CLIMB-DIVE PARALLEL

FIGURE 5-19. PATTERN A - BCAS EQUIPPED AIRCRAFT (OWN) FLYING LEVEL AND OTHER FLYING IN THE SAME DIRECTION EITHER CLIMBING OR DIVING

Table 5-21 gives a summary of Pattern A maneuvers and interrogation modes used.

<u>Test</u> Number	Maneuver	Interrogation Mode
1	D*	I17
2	С	I17
3	D	I 3 3
4	С	I 3 3
5	D	I 3 2
б	C	I 3 2
7	C	I 31
8		
*Indicat:	ion maneuver of OTHER aircraft:	D-dive, C-climb

TABLE 5-21. PATTERN A INTERROGATION MODE SUMMARY

<u>Pattern B</u>. Both the OWN and OTHER aircraft were in climb-dive parallel patterns similar to Pattern A flying along the $30^{\circ}/210^{\circ}$ and $50^{\circ}/230^{\circ}$ figure eights (Figure 5-20).

Table 5-22 gives a summary of the climb-dive maneuvers and interrogation modes used.

<u>Pattern C</u>. In pattern C, OWN aircraft was flying a sequence of figure eights along 300°/120° and 320°/140° at 10,000 feet altitude (Figure 5-21). OTHER performed repeated encounters in parallel climb-dive flights between 9,000 and 11,000 feet altitudes. Table 5-23 gives a summary of Pattern C interrogation mode.

5.16.3 Threat Logic Climb-Dive Test Data Analysis

The twenty-four climb-dive tests were analyzed to assess BCAS adequacy in determining altitude threat zones. Associated BCAS and ARTS III field test tapes were processed to produce

- o BCAS Detailed Listings
- o Threat Information Listings
- o TOA Cal Comp Plots OWN Interrogator

o TOA and DAZ Comparison Cal Comp Plots (BCAS versus ARTS III).

The BCAS Detailed Processing Program output is described in Section 6. Of particular importance for this analysis is the threat information listing containing Type 7-1 message data (Appendix E). A representative sample of these data is contained in Figures 5-22 - 5-26.

Plots of OWN interrogator TOA were generated for all tests and are shown in Figures 5.16-12 through 5.16-33. During testing, when a threat occurred, OWN's interrogator was activated every

CLIMB & DIVE PARALLEL

FIGURE 5-20. PATTERN B - BOTH AIRCRAFT OWN AND OTHER, CLIMBING AND DIVING IN THE SAME DIRECTION

TABLE 5-22. PATTERN B INTERROGATION MODE SUMMARY

<u>Test</u> <u>Number</u>	Maneuver	Interrogation Mode
9	D-C*	I17
10	C - D	I17
11	D - C	I 3 3
12	C - D	I 3 3
13	D-C	I 3 2
14	C - D	I 3 2
15	D-C	I 31
16	C - D	I 31

.

*Indication of OWN-OTHER aircrafts; e.g. D-C; OWN-drive OTHER-climb

LEVEL VS. CLIMB-DIVE HEAD-ON

FIGURE 5-21. PATTERN C - OWN AIRCRAFT FLIES LEVEL AND OTHER FLIES OPPOSITE DIRECTION EITHER CLIMBING OR DIVING

TABLE 5-23. PATTERN C INTERROGATION MODE SUMMARY

<u>Test</u> Number	Maneuver	Interrogation Mode
17	D*	I17
18	C	I17
19	D	I 3 3
20	С	I 3 3
21	D	132
22	С	I 3 2
23	D	131
24	С	I31

*Maneuver of OTHER: D-dive, C-climb.

LCAS QUICK LOOK PROGRAM DATE 22 NOV 1976 PAGE 0146 RADAR/TARGET LISTING INTERNAL TIE-BREAKER RADAR CLOCK DI .XC, XA PREDICTED TIME UNTIL ALARM (SEC) THREAT (SEC) OTHER ALT OTHER OWN TAU2 TAU2P BITS STATUS GTRN BCD BWN ALT TAU0 TAU1 ------+ **---.... -------------.... 2 4277 352.712 11300 000 000 130.729 130.729 115.762 115.762 0001 00 7500 3 4233 352.712 11500 11300 000 000 118,252 118,252 64,067 64,067 0010 00 HIT 15 BCT353522723+5US CAACAACA SCP 3+9585 SCN 227 PRP3999US TVAN SLS 722/ 159- 599 NIN 95 BAL 11300FT AWN133-09 ACH 55-37 RID D DAZ TAL LTRN GTRN TIME TARGETS FOR SCAN 227 RID D TID BCD NRP TOA 4277 9.860US 11.45 7400 97 11138:46+5 8 1 1 14.790US 103 11:38:46.5 2 2024 9 4.00 ****** 3 4277 9 14.810US 11.98 7400 107 11:38:46.6 6 22.690US +18.11 11500 3 11:38:46+2 4 4233 104 ASR4 HIT 18 BCT354306275.5US ACAACAAC SCP 3.9265 SCN 123 PRP2625US SLS1091/ 261- 599 NIN 116 BAL 11300FT AWN197+11 ACH348+05 RID B 1 4277 355+201 7500 11300 000 010 130.738 130.738 115.771 115.771 0011 00 MAXIMUM RATE 2000 FT/MIN UP NO TURN 0001 00 7500 130.729 130.729 115.762 115.762 2 4277 355+201 11300 000 010 NO TURN MAXIMUM RATE 2000 FT/MIN UP 000 010 130.719 130.715 .33.573 .33.573 0010 21 3 4233 355+211 11500 11300 NO TURN MAXIMUM RATE 2000 FT-MIN UP TARGETS FOR SCAN 123 RID B BCD NRP TOA DAZ TAL LTRN GTRN TIME TID ----11+07 ITITI 2.41005 11:38:47.3 1 0200 14 7400 11:38:47.3 2 4277 16 46.640US 10.76 91 9.73 3 4277 9 51+620US 7400 100 2 11:38:47+3 4 3030 13 97.200US 13.65 ****** 11138:47+4 0 PRP2739US HIT 37 BCT356111863.6US AACAACAA SCP12.0395 SCN HIT 16 BCT356935229.4US AAAAAAA SCP15.7135 SCN 0 PRP3342US HIT 19 BCT357612860+8US ACACACAC SCP15+6718 SCN -0 PRP2505US TVAN HIT 13 BCT357471858.9US CAACAACA SCP 3.9495 SCN 228 PRP3999US SLS 794/ 122. 599 NIN 96 CAL 11300FT AWN133.87 ACH129.46 RID D 00 130.738 130.738 115.771 115.771 0011 1 4277 357+948 7400 11300 000 010 MAXIMUM RATE 2000 FT/MIN UP NO TURN

FIGURE 5-22. BCAS QUICK LOOK RADAR/TARGET LISTING

149

ILED PROCE	SSING PROGR	AM	···· ··- ·	DATE 22 JUN 1977	PAGE	0016
arı rtaitu	~					
INTERNAL			TIE-BREAKER			
CLUCK			DIAXCAXA	PREDICTED TIME UNTIL ALARM (SEC)	RADAR	THREAT
(SECT	UTHER ALT	OWN ALT	OTHER OWN	TAUQ TAU1 TAU2 TAU2P	BITS	STATUS
		******	****			*****
172+426	8800	10000	000 000 M	130.729 130.729-221.025-155.711 NAXIMUM RATE 2000 FT/MIN DOWN	1010	06
172.426	8800	10000	000 000	-20-212 -20-212 -41.717 -41-717	1000	06
			ri T	AXIMUM RATE 2000 FT/MIN DOWN		
172+436	8800	10000	000 000	*18+597 *18+597 *39+883 *39+883	1000	06
			M	AXIMUM RATE 2000 FT/MIN DOWN		
172.436	8800	10000	000 000	-13.750 -13.750 -36.082 -36.082	1000	06
	<u></u>		M	AXIMUM RATE 2000 FT/MIN DOWN		
174.717	8800	10000	000 000	130.738 130.738-223.305-155.702	1010	06
			M	AXIMUM RATE 2000 FT/MIN DOWN		
174.717	8800	10000	000 000	-22.502 +22.502 +44.007 +44.007	1000	06
			M	AXIMUM RATE 2000 FT/MIN DOWN		
174+726	8800	10000	000 000	•20.887 •20.887 •42.173 •42.173	1000	
			M	AXIMUM RATE 2000 FT/MIN DOWN		
174.726	8800	10000	000 000	-16.041 -16.041 -38.372 -38.372	1000	06
			M	AXIMUM RATE 2000 FT7MIN DOWN		
174.735	8800	10000	000 000	130-710 130-710 58-793 58-793	1000	00
		10000	M	AXIMUM RATE 2000 FT/MIN DOWN		
177.206	8800	10000	000 000	130.738 130.738-195.614-155.702	1010	06
			M	AXIMUM RATE 2000 FT7MIN DOWN		
177.216	8800	10000		*75.002 *25.007 *46.506 *46.506	1000	
			M	AXIMUM RATE 2000 FT/MIN DOWN		
177.216	8800	10000	000 000	-23.377 -23.377 -44.663 -44.663	1000	06
			M	AXIMUM RATE 2000 FT7MIN DOWN		
177.216	8800	10000		*18+530 *18+530 *40+862 *40+862		
			M	AXIMUM RATE 2000 FT/MIN DOWN		
177.225	8800	10000	000 000	116.075 116.075 41.460 41.460	1000	00
			M	AXIMUM RATE 2000 FT/MIN DOWN		
	ILED PROCE GET LISTIN INTERNAL CLOCK (SEC) 172.426 172.426 172.436 172.436 172.436 174.717 174.717 174.726 174.726 177.216 177.216 177.216 177.225	ILED PROCESSING PROGR GET LISTING INTERNAL CLOCK CLOCK BTHER AL1 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.436 8800 174.717 8800 174.717 8800 174.726 8800 174.726 8800 174.726 8800 177.226 8800 177.216 8800 177.216 8800 177.216 8800 177.225 8800	ILED PROCESSING PROGRAM GET LISTING INTERNAL CLOCK OWN AL1 172.425 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 172.426 8800 174.717 8800 174.717 8800 174.726 8800 174.726 8800 174.726 8800 174.726 8800 177.216 8800 177.216 8800 177.216 8800 177.225 8800 177.225 8800	ILED PROCESSING PROGRAM GET LISTING TIE-BREAKER CLOCK D1,XC,XA (SEC) 0THER ALT 0WN AL1 172.426 8800 10000 000 172.426 8800 10000 000 000 172.426 8800 10000 000 000 172.426 8800 10000 000 000 172.436 8800 10000 000 000 172.436 8800 10000 000 000 174.717 8800 10000 000 000 174.717 8800 10000 000 000 174.726 8800 10000 000 000 174.726 8800 10000 000 000 174.726 8800 10000 000 000 177.216 8800 10000 000 000 177.216 8800 10000 000 000	LLED PROCESSING DATE 22 JUN 1977 GET LISTING TIFERNAL TIFERNAL TIFERNAL CLBCK D1xXCxxA PREDICTED TIME UNTIL ALARM (SEC) 172:426 BB00 10000 000 000 20.729 130.729-221.005-1555711 172:426 B800 10000 000 000 172:426 B800 10000 000 000 -20.212 +0.717 +41.717 MAXIMUM RATE 2000 FT/MIN DBWN 172:426 8800 10000 000 HAXIMUM RATE 2000 FT/MIN DBWN 172:436 8800 10000 000 000 -13.750 -36.082 MAXIMUM RATE 2000 FT/MIN DBWN 174.717 8800 10000 000 -13.750 -36.082 MAXIMUM RATE 2000 FT/MIN DBWN 174.717 8800 10000 000	LLED PROCESSING PROGRAM DATE 22 JUN 1977 PAGE GET LISTING TIE-BREAKER D1.XC.XA D1.XC.XA PREDICTED TIME_UNTIL ALARM (SEC) RADAR SECI BTHER ALT WEN ALT WEN ALT WEN FAUD TAULY TAUP TAUP TAUP TAUP TAUP TAUP TAUP TAUP

FIGURE 5-23. BCAS DETAILED PROCESSING LISTING - JUNE 1977

150

,

LCAS RADA	DETAILED P R/TARGET LI	ROCES Sting	SING	PR8G	IRAM	- own	N RA	DAR				1	DATE 6 APR 19	977	PAGE	0007
TARG	ETS FOR SCAI	N 41	RID	ĸ	TID 1 2 3	BCD 4216 2400 3065	NRP 22 8 18	T8A 37.760US 79.290US 96.490US	DÁZ •00 •00 •00	TAL 10600 ******	L TRN 92	GTRN 5	TIME 13:13:41.4 13:13:41.4 13:13:41.4			
0WN Sls	HIT 24 BC 0/ 10= 59	T 35 3 NIN	53870 24	7.3U	S 88 97	900000 700FT	B SCI	2.4995 SCN .00 ACH218	42 • 67	PRP3000						

•00 ACH218.67 RID K NPRP 1 TII 6080653.6US

151

FIGURE 5-24. BCAS DETAILED PROCESSING LISTING - APRIL 1977

DATE 6. APR 1977 PAGE. FOR RADAR & SCAN 41 LCAS DETAILED PROCESSING PROGRAM 0006 TOA DIFFERENTIAL AZIMUTHS 7.685 ACTIVE 14.935 ACTIVE 17.690 ACTIVE 22.04C ACTIVE 26.100 ACTIVE 26.245 26.390 ACTIVE 33.350 ACTIVE 36.250 ACTIVE 37.700 ACTIVEACTIV 22 37.845 ACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVE 46.835 ACTIVE 46.980 ACTIVEACTIVEACTIVE 47.125 ACTIVE 58.435 ACTIVE 67.860 ACTIVEACTIVE 79.170 ACTIVE 79.315 ACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVE 8 88.015 ACTIVEACTIVE 88.160 88.305 88.450 ACTIVE 88.595 ACTIVE 88.740 ACTIVEACTIVEACTIVE 93.815 ACTIVEACTIVE 1 96.280 ACTIVE 11 96.425 ACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVEACTIVE 18 2 96.570 ACTIVEACTIVE 96.715 ACTIVEACTIVEACTIVEACTIVE 4 96.860 97.005 ACTIVE

FIGURE 5-25. BCAS DETAILED PROCESSING PROGRAM OF TOA AND DAZ.

152

Ì

LCAS DETAILED PROCESSING PROGRAM TOA/DAZ REPLY LISTING FOR RADAR K SCAN 41		DATE 6 APR 1977 PAGE OCO4
INTERROGATION TIME: 3470089.395 MODE: A	DAZ: ACTIVE	3000.05
INTERROGATION TIME 3473089.445 MODE: C	DAZ: ACTIVE	3000.05
-22-910 000000 37-845 006160 96.425 001740 INTERROGATION TIME: 3476089.495 MODE: A	DAZ: ACTIVE	3000.10
37.700 004216 79.315 022400 INTERR®GATION TIME: 3482089.595 MODE: C	DAZ: ACTIVE	6000.05
-23.055 000000 96.425 001740 INTERROGATION TIME: 3485089.645 MODE: A	DAZ: ACTIVE	3000.05
37•700 004216 79•315 022400 INTERR®GATI®N TIME: 3488089•695 MBDE: C	DAZ: ACTIVE	3000.10
37.845 006160 96.425 001740 INTERROGATION TIME: 3494089.795 MODE: A	DAZ: ACTIVE	6000.05
37.700 004216 79.315 022400 Interrøgation time: 3497089.845 mode: C	DAZ: ACTIVE "	3000.05
-22-910 000000 37-845 006160 96-425 001740 INTERR®GATI®N TIME: 3500089-895 MeDE: A	DAZ: ACTIVE	3000.10
37.700 004216 46.835 012000 58.435 004000 INTERROGATION TIME: 3506089.995 MODE: C	DAT: ACTIVE	6000.05
-23.055 000000 37.845 006160 96.425 001740 INTERRØGATION TIME: 3509090.045 MODE: A	DAZ: ACTIVE	3000.15 3546231.215
-22-910 000000 37-700 004216 79-315 022400 INTERROGATION TIME: 3518090-195 Made: C	DAT: ACTIVE	9000.15 $-\frac{3518090.195}{28141.020}$
-22.910 000000 37.845 006160 96.425 001740	DAZ: ACTIVE	~
-58.145 002754 37.700 004216 88.740 000200	96.715 003064	3549231.265
37-845 006160 96+425 001740	DAZI ACTIVE	3000.15 $\frac{5340231.213}{3000.050}$
33,350 023025 36.250 011412 37.700 004216	46.980 000004	79.315 020400 88.450 005303
96.715 003065 INTERROGATION TIME: 3558231.415 MODE: C	DAZ: ACTIVE	6000.10
37.845 006160 96.425 001740 INTERROGATION TIME: 3561231.465 MODE: A	DAZ:_ACTIVĘ	3000.05
37.700 004216 46.980 000000 79.315 020400 INTERR®GATI®N TIME: 3564231.515 MBDE: C	96.715 003065 DAZ: ACTIVE	3000.05
47.125 006160 96.425 001740 INTERROGATION TIME: 3570231.615 MODE: A	DAZ: ACTIVE	6000.10
+48.720 001200 37.700 004216 46.980 000000 INTERROGATION TIME: 3573231.665 MODE: C	88.595 001200 DAZ: ACTIVE	96.570 003665 3000.05
-23.055 000000 -2.465 020400 7.685 030245 26.390 006516 37.845 006160 67.860 000000	14.935 003541 88.015 006112	17.690 035620 22.040 032023 3000.05 93.815 013600 96.425 001740 3000.05
INTERROGATION TIME: 3576231.715 MODE: A 37.700 004216 79.170 002400 88.740 001000	DAZ: ACTIVE	6000.10
INTERROGATION TIME: 3582231+815 MODE: C 37.845 036160 67.860 000000 88.015 006112	DAZ: ACTIVE	96-280 001740
INTERROGATION TIME: 3585231+865 MODE: A	DAZI ACTIVE	94-715 003045
	00+/70 UU1200	301172 003003

FIGURE 5-26. BCAS DETAILED PROCESSING PROGRAM OF TOA AND DAZ FOR K SCAN

2.5 seconds in a burst mode of 24 omnidirectional interrogations: 12 interrogations from the top antenna spaced 3 or 6 milliseconds apart, followed by a delay of approximately 18.2 milliseconds, and then 12 interrogations from the bottom antenna, again with the same repeating spacing sequence of 3 or 6 milliseconds. Meanwhile, the target aircraft (OTHER) utilized only the aircraft transponder's antenna physically located on the underside of the fuselage.

TOA and DAZ comparison plots of BCAS versus ARTS III were generated for selected test runs and are shown in Figures 5.16-34 through 5.16-51.

Threat information of each run of the climb-dive tests is summarized in Table 5-24. The following conclusions can be made on the basis of the reported data:

- 1. The threat code sequences are consistent with the flight patterns with only few exceptions.
- The advisories generated in flight by the Tie-Breaker logic in the form of X, D₁ pulses (Table 5-25) and the BCAS display algorithm (Appendix C) are consistent.
- 3. Multiple global tracks were initiated for the target in most of the test runs. No explanation is available on the cause of these multiple tracks.

Altitude profiles of the flight trajectories derived from the BCAS and ARTS III data have been plotted for the runs numbered 1, 11, and 17, with the threat codes generated by BCAS superimposed, (Figures 5.16-52 to 5.16-54).

5.16.4 Level Flight Test Data Analysis

These tests entailed two aircraft flying daisy patterns (15° and 30° petals), one aircraft flying left turns, the other aircraft flying right turns, separated by 400' in altitude. The level flight tests were analyzed to assess the ability of BCAS to determine co-altitude threat zones. The level flight test data were processed by the same reduction programs as the data for the climb-dive tests.

TABLE 5-24. SYNOPSES OF CLIMB-DIVE TESTS

TB: Tie Breaker DI: Display Indicator TAU-2, 2P - always negative Test No. Run Description Threat Code Sequence Remarks TAU-0 - always positive, except in threat 30, 31, 32) 1 Pattern A in dive, Il7 07-21-31-32-20-0 3 global tracks of OTHER 06-16-20-21-07-20-30-07-32-31-21-00 6 global tracks of OTHER 2 Pattern A in climb, 117 00-17-21-31-32-30-20-00 ASR-4 lock was lost; regaining lock the same 2 global 3 Pattern A in dive, I33 tracks of OTHER appeared again. 06-30-20-00 2 global tracks of OTHER 4 Pattern A in climb, 133 5 2 global tracks of OWN; TB: Threat-fly straight and level; Pattern A in dive, 132 07-17-31-32-30-20-00 DI: level off no turn 6 Pattern A in climb, I32 06 - 00 - 20 - 00 - 30 - 31 - 21One global track of OTHER; TB: threat-fly straight; dive 7 Pattern A in dive, I31 07-17-07-21-31-32-30-20-00 DI: level off-no turn; dive 8 Pattern A in climb, 131 One global track of OTHER 32-30-31-22-00 9 2 global tracks of OTHER; TB: threat-fly straight and level; Pattern B dive-climb, 117 02-04-06-16-30-20-32-31-32-21-07 climb; DI: level off no turn; climb no turn 3 global tracks of OTHER 10 Pattern B climb-dive, Il7 00-21-31-22-32-20-30-06 11 No data reported. Pattern B dive-climb, I33 12 Pattern B climb-dive, I33 No false tracks; TB: threat-fly straight and level; climb 00-05-07-17-21-32-30-06-04 DI: level off no turn; climb no turn 13 Erroneous altitude codes Pattern B dive-climb, 132 31-02-30-04-20-06-32-31 14 03-05-07-17-21-31-32-30-06-04 TB: threat-fly straight and level; dive; climb Pattern B climb-dive, I32 DI: no turn level off; dive; climb 15 2 global tracks: GTRN1 16-20-30-32-31-21 Pattern B climb-dive, I31 16-20-30-22-32-31-21 GTRN2 20-30-22-31 2 global tracks of OTHER 16 Pattern B climb-dive, I31 07-17-21-31-32-30-00-06-04 17 3 global tracks of OTHER; TB: threat-dive Pattern C level-dive, I33 21-31-32-30 18 Pattern C level-climb, I17 No data reported. 19 Pattern C level-dive, I33 5 global tracks of OTHER 21-31-32-30 20 4 global tracks of OTHER Pattern C level-climb, I33 06-30-20-30 21 2 global tracks of OTHER Pattern C level-dive, I32 21-31-32-30-05-03 22 Pattern C level-climb, I32 20-30-32-30

TABLE 5-25. TIE-BREAKER CODE

Bit Assignment	Advisory
X _A X _C D ₁	
0 0 0	no threat
0 0 1	threat-fly straight and level
0 1 0	dive
0 1 1	climb
100	turn left
1 0 1	turn right
1 1 0	T-L and change altitude
1 1 1	T-R and change altitude

 $\rm X_A$ bit related to the Mode-A message reply $\rm X_C$ bit related to the Mode-C message reply

Hand computations were also performed to verify TAU values using BCAS measurements and threat equations in Appendix C and it was determined that the BCAS was computing the TAU values correctly i.e., consistent with the measurements.

5.16.5 Results of BCAS TAU Analysis

<u>Threat Logic Performance Assessment</u>. Analysis of the data reduction output indicates that BCAS can determine the threat zones defined in Appendix C.

For both the climb-dive tests and the level flight tests, the threat status code sequences were found to be predominantly correct - i.e., consistent with the sequence of OTHER's penetration through various altitude and range boundries during the test patterns.

The BCAS computed and recorded on the detail tape a set of quantities designated as TAU-0, TAU-1, TAU-2, and TAU-2P times, which are predictions of the time until the target will enter into the corresponding threat status. These numbers were not analyzed for correctness or consistency. It was noted, however, that when multiple global tracks were generated for a target, these quantities were different for each global track (cf. Figure 5-22). The sign of the reported values follows the following rule: when the values of TAU words are positive the aircraft is outside the corresponding regions and the specific values denote the expected time when these regions will be crossed. When the values are negative and no more negative than minus seventy-five seconds, it means the aircraft is inside that boundary.

<u>Tie-Breaker Performance Assessment</u>. The tie-breaker data and the dive indicator information were also analyzed. The software consistently output tie-breaker data when the system predicted a co-altitude threat (i.e., threat status codes 12, 13, 14, 15, 16, 17, 20, 21, and 22) for purposes of indicating to the ground and other BCAS equipped aircraft the anticipated evasive meaneuvers. Throughout this time period, the dive indicator would instruct the pilot to maintain level flight. When the TAU-1 boundary was penetrated, the dive indicator would immediately display the previously forecast evasive maneuver.

The tie-breaker bits should be distinguishable by other aircraft in the vicinity. However, this information was occasionally received incorrectly by the ARTS III site, in the sense that the ARTS III logic associated the tie-breaker bits with a wrong target. Thus, if this technique were being used operationally, there would be occasions when the ground controller's display would attribute planned evasive action to the wrong aircraft.

6. DATA REDUCTION PROGRAMS

6.1 BCAS DATA TAPE PROCESSING

The BCAS data reduction programs developed at TSC were designed to extract the information contained on the BCAS data collection tape. Together with data from other NAFEC measurement systems, these data were used to determine BCAS system accuracies. The information on the BCAS data collection tape is grouped into the following record types:

Туре	0-1	Header
Туре	0 - 2	Header (alphabetic info)
Туре	1-1	Main Beam Interrupts (unrecognized)
Туре	2-1	Recognized and locked radars
Туре	2 - 2	Recognized and locked radars
		(alphabetic info)
Type	2-3	Recognized and locked radars
Туре	3-1	Raw replies
Туре	3-2	Raw replies (interrogation table)
Туре	3-3	Raw replies (reply data)
Туре	4-1	First correlated replies
Туре	5-1	Second correlation
Туре	6-1	Third correlation
Туре	7-1	Threat Info.

A detailed description of each record type, enumerating every data element within each record, is contained in Appendix E. The processing programs that process the BCAS data collection tapes and present the information in a form suitable for reading by an analyst are discussed in the following sections.

BCAS Detailed Processing Program

This program generates a detailed listing in readable format for record times 0-1, 0-2, 2-1, 2-2, 2-3, 4-1, 5-1, 6-1, and 7-1. By setting program switches at the time a BCAS tape is processed, it is possible to selectively print various subsets of the information on the tape. In addition a version of the program was developed to write an image of the paper report on magnetic tape. Such tapes serve as convenient input for programs to perform further processing of the BCAS data.

A sample output listing is shown in Figure 6-1 with details provided in Table 6-1. The data elements in each group of output lines.

6.2 RANGE-BEARING CALCULATIONS

A sequence of programs have been developed that permit BCAS tapes and ARTS tapes to be used to generate plots of slant range and bearing between the BCAS aircraft and selected targets as functions of time. The calculations are performed on the PDP-10 computer at TSC and the results are plotted on the associated Calcomp plotter. Sample plots are included in this report as Figures 5.2-10 - 5.2-19 (Appendix F).

The resulting plots show BCAS-derived and ARTS-derived range and bearing values superimposed on the same plots for comparison. If the BCAS on-board interrogator has been used, the range based on active interrogations is also plotted. The ARTS-derived values are plotted with error bars corresponding approximately to their 90% confidence intervals.

Plots can be generated for range and bearings between the BCAS aircraft and any other transponder-equipped aircraft (including targets of opportunity) or between the BCAS aircraft and the fixed transponder.

6.3 ERROR ANALYSIS PROGRAM

A typical printout generated by the Error Analysis Program is shown in Figure 6-2. The listing includes TOA and DAZ measurements made by BCAS; values for TOA and DAZ computed from EAIR measurements; and the differences in these TOA and DAZ values. Associated means, standard deviations, number of samples, sums, and sums of squares are also listed for TOA and DAZ.

FIGURE 6-1. BCAS DETAILED PROCESSING LISTING

	RUN 7	131																	
	TARGE	TS FO	R SCA	N 18	9 R1(к	TID	вср	NRP	TBA		DAZ	TAL	LTRN	GTRN		TIME		
		ніт	+ 2 8	CT26	0714	589.5	US A	120C CAACA	12 AA SC	58.870U P14.958S	S SĈN	•00	6900 PRP2820	US		14; 4	:38+8		
~	ASR5 SLS12		18 8 22- 5 INTER	C126 99 N NÂL	0610 IN 12	312v2 28 94	US C L 8	AACAA 6COFT	CA SC Awn2	P 4.6949 25.40 AC TIE-BREA D1.XC	SCN H298 KER	- 92 •83 R PR	PRP2911 ID A FDICTED	US D TIME	UNTI		M (SEC)	RADAR	THREAT
	GTRN	BCD	(56	ei	6TH	R AL	Ţ	OWN A	ĿŦ	OTHER	OWN		TAUD	TA	U1	TAU2	TAU2P	BITS	STATUS
		2753	- 261	+248		1020	-	- 85			-000	1	28.248	128+2	48 11	3+282	113.282		
	TARGE	TS F8	R SCA	N 9	2 RI	 D A	TID	BCD	NRP	TUA		DAZ	TAL	LTRN	GTRN		TIME		
								1200		29.5100		2.66	0069	****		14: 4	142.9		
								1200	15	2713100	<u> </u>		0,00						
	0wN	HIT	12 B	C[25	8804	995.4	US 6	88858	88 SC	P 2.4995	SCN 11292	190	PRP300	005					
	SLS TARGE	TS FE	I = = IR SCA	N 19	ORI	12 01 D K	דום	BCD	NRP	TBA		DAZ	TAL	LTRN	GTRN		TIME		
								1200		40-050	IS .	•00	6900	125		141	4:41.3		
_		ні	13 E	126	1451	259.3	105-7	ACAAC	AA SC	P 4.7065	550	0	PRP322	205					
	F	HI	26 8	CT26	1807	611+	lus (ACACA	CA SO	P10.1105	SCN	<u> </u>	PRP286	005 905 —					
		HI'	14 E	SCT26	2298	300+9		ACAAC	AL SU	P 3.9325	SC	ŏ	PRP262	505					
-	71/44		r 0.6	AC 124	2311	155.	5US /		AC SC	CP 4.0089	S SCM	189	PRP399	9US					
		8297 2753	26 26	9 9 . 3.747	IN I	00 8 102	AL 00	3500F	AWN:	135.79 AC 000	H298	3•83 () 	(10 G 125,749	125.	749 1	10.782	110.782	1011	00
	_				~ ~							. 017	TAL	LTRN	GTRN		TIME	· · · · ·	· · · -
	TARG	ETS F	JH-SCI	AN 12	19 KI	0 0	111												
								1 1200	15	59.770	15	•88	2900	126		141	41448		
	'9WN' SIS	нт 0/	12 1 0+ 1	8CT20 599 I	5 <mark>129</mark> 8 NIN	192. 12 0	4US AL	999991 8500F	T AWN	CP 2.499	5 '5CI CH29	N 191 9+44	РКР 300 КІД К	ous					
	TARG	ETS F	OR SC	AN 1	91 R	DK	ΤĪ	D BCI	NRP	TOA		DAZ	TAL	LIKN	G (K-N				
								1 120	0 12	61.160	5	•00	6900	125		141	4:43+8		
									-										

TABLE 6-1. TSC-BCAS DETAILED PROCESSING PROGRAM

This program generates a detailed listing in a readable format for record types 0-1, 0-2, 2-1, 2-2, 2-3, 4-1, 5-1, 6-1, and 7-1.

Figure 6-1 is a sample annotated listing containing the following abbreviations:

A. Type 0-1 message

INT: internal clock time in μ seconds
EXT: external clock time; hours, minutes and seconds to the nearest tenth of a second.
VER: the BCAS version number
MAXTOA: maximum TOA in μ seconds
WAW: widened azimuth window in degrees
UAL: upper altitude envelope for OWN
LAL: Lower altitude envelope for OWN.

B. Type 0-2 message

Contains up to 78 alphanumeric characters entered as a title or run description.

C. Contains Type 2-1 and Type 2-2 information

ASR-5: denotes external radar identification of locked radar

HIT: number of interrogations of OWN in the main beam BCT: internal clock time of OWN's beam center CAACAACA: interrogation mode interlace for the last 8 interrogations SCP: scan period of the radar in seconds

SCN: denotes the scan number of the radar from radar lock

PRP: pulse repetition periods; for an ASR-7 radar, 8 such periods are denoted.

D. Contains Type 2-2 and Type 2-3 information

SLS: # of sidelobe suppressions

322: # of missed interrogations

- 599: radar quality number
- NIN: # of interrogations in the widened azimuth window

OAL: OWN's altitude in feet

- AWN: OWN'S azimuth
- ACH: aircraft heading
- RIDA: internal radar identification. This is used to equate target reports to the appropriate external radar (e.g., ASR-4).

TABLE 6-1. TSC-BCAS DETAILED PROCESSING PROGRAM (Cont.) E. Contains Types 4-1, 5-1, and 6-1 record types SCAN: scan number RIDA: internal radar identification TID: target identification BCD: beacon code NRP: # of replies TOA: time of arrival in μ seconds DAZ: differential azimuth TAL: target's altitude. Type 5-1 LTRN: local track number. Type 6-1 GTRN: global track number. F. Contains Type 2 information for an unlocked radar; similar to C above. G. Type 7-1 message. GTRN: global track number BCD: beacon code INT: internal clock time in seconds OTHER'S altitude in feet OWN'S altitude in feet tie-breaker bits (D_1, X_c, X_a) tie-breaker bits (D_1, X_c, X_a) range/range rate from active OTHER'S OWN'S TAUO TAU1

time to penetrate 25 sec. line

time to penetrate 40 sec. line

passive data - 40 sec. line.

TAU2

TAU2P

FIGURE 6-2. ERROR ANALYSIS

TOA/DAZ ERRO	R ANALY	SIS PROGRAM				DATE 24 JAN 1	1977 PAGE	0005	
ARGET CODE:	0777	RUN 2 LC	AS 045 11/9/	76 ASR+4		EALD.	DA7		
	SCAN	BCAS	EAIR	TUA	ELAS				
TIME	NÐ •	TBA	T B A	DIFF	UAZ	DAL			
							- 244		
1:12: 4.8	5	18+510	18.146	• 364	+1+791	+1+545			
1:12:12+7	7	23.740	23.454	-286	-2+241	•1•087	- 738		
1:12:16+6	8	26+530	26.253	•2//	• 2 • 450	•1•/20			
1:12:24.5	10	35.560	31.910	.350	•1•851	•1•/30	788		
1:12:28+4	11	35+110	34.897	.213	=2+076	•1•080			
1:15:35.3	12	33+170	37.843	.327	-1+741	•1•765			
1:12:36+2	13	41.130	40.712	•418	•2+247	=1+720	**527		
1:12:40+2	14	44.120	43.776	.344	-2-098	•1•765			
1:12:48.0	16	50,250	49.894	• 356	-2+263	-1+94/			
1:12:51.9	17	53,320	52.890	.430	-2-192	+2+C74	••118		
1:12:55+8	18	56.420	56.007	.413	-2.390	-2,195	-+195		
1:12:59.7	19	59.520	59.210	.310	+1+588	-2-298	•/10		
1:13: 3.7	50	62.660	62.305	.355	-2+653	+2+382	-+2/1		
1:13: 7.6	21	65.760	65.328	.432	-2+131	•2.434	• 303		
1:13:11.5	22	68.920	68,515	.405	•3+071	-2-463	-+608		
1:13:15.4	23	72.010	71.646	.364	-2-889	-2.514	=+375		
11:13:19.4	24	75.180	74.702	.478	•2•494	•2•63C	•136		
1112.23.1		78.190	77.710	.480	-3.005	-2-839	••166		
1112.27.2	26	81.340	80.868	.472	-2-653	-3.095	• 4 4 2		
1113131142		84.410	84.078	,332	-3-505	=3.343	++162		
11113130.0	29	90.620	90.073	.547	+3+895	-3.715	-•180		
1 1 1 3 1 4 2 . 4 2 . 9		93.740	505+56	.538	-3-933	•3.885	-+048		
11,13,72,2	31	96.740	96.376	.364	-3.867	=4 = 108	• 241		
[]+[], (0)]									
		••154	DAZ S+D+:	• 344	N= 23	SUM=	-3.539 SUM OF	SQUARES	3.14
TOA MEAN		• 385	TOA SODA:	+083	N= 23	SUMe	8.855 SUM 8F	SUUARES	3.22

_

2000

In addition the Error Analysis Program processes BCAS versus ARTS III data.

6.4 PLOTTING PROGRAM

Computer generated plots of TOA, DAZ and OWN AZ depicting BCAS measurements and either EAIR measurement or ARTS III measurements are generated by this plot program. Examples of these plots are shown in Figures 5.2-1 - 5.2-9 (Appendix F).

6.5 TOA/DAZ REPLY LISTINGS

Figure 6-3 shows a typical printout of the TOA/DAZ Reply listing. The listing indicates the interrogation time, the interrogation mode, the DAZ and, for the reply(s) received, the TOA and the reply in octal format.

6.6 TOA/DAZ HISTOGRAM TABLE

The Histogram Table Program duplicates the manner in which reply data are processed by the software on board the BCAS system for purposes of target report declaration.

The Histogram Table (see Figure 6-4) lists TOA bins from 0.000 μ seconds to 150 μ seconds with the reply entries depicted in histogram format within the appropriate TOA bin by their associated DAZ value.

6.7 FRUIT SUSCEPTIBILITY PROGRAM

This program processes reply data received by BCAS and calculates over a prescribed time interval, on a per scan basis, the number of transponder replies, the number of fruit replies, percentage of fruit, means, and standard deviations (see Table 5-9).

6.8 ARTS III PROCESSING

The data reduction programs developed at TSC were designed to utilize the information contained on the ARTS III data extraction tapes as a means of monitoring BCAS system testing and to generate

FIGURE 6-3. FLIGHT HISTORY

503+SY	OTEN 1	ASSI'NED B	EACAN	CUDE	44.72	TAPE 10:	9048	FILE 1	SEGMENT	1				PAGE	29	
SCAN	TI I	4C10	98C	c	ALT	RANGE	AZIMUTH	VELECITY	DIRECTION	FIRM	#/5	VA	vc	RUN	н1т	
1 1	4:10:40	• \.49 •	4572	1	1 C C 1 C C	11+52 11+50	214+80 215+33	190+27	332.49	37	с	3	2	12	11	
2	4:10:4) *:10:48	8 1.49 b	4572	1	001 0	11.37 11.44	215-86 216-56	195.01	332.05	37	0	3	0	8	7	
3 3	4:10:52 *:10:52	2 1.49 1	4572	1	100	11.31 11.31	217.00 216.47	201+47	330.75	37	C	3	2	13	10	
4 4 4	4:10:50 4:10:55 4:10:55	6 :,49 5 5	4 ₹72	1	100 100 100	11.19 11.25 11.25	217.79 217.79 211.99	195+01	332+05	37	1	3 3	3	19 17	16 9	
55	4:11: (4:10:5	0 v49	4572	1	1 6 0 1 6 0	11.12 11.19	218.76 219.02	195+01	332.05	37	1	3	5	19	15	
6	4:11: 4:11:	4 1,49 9	4572	1	100 150	11.06 11.12	219.81 220.08	196.69	331+14	37	1	3	3	17	15	
7	4:11: 4	5 7.49	4=72	1	100 100	11.00 11.00	220.96 221.04	196+69	J31.14	37	c	Э	3	15	11	
8 8	4:11:12 4:11:12	l 149	4572	1	1 00 1 CC	10.94 10.94	222.C1 222.1C	196+69	331.14	37	1	з	3	18	16	
9	4:11:19 4:11:1	5 1.49 5	4572	1	100 140	1C+87 1C+87	223.07 222.98	196+69	331.14	37	o	З	2	sc	12	
10 10	4:11:19 4:11:19	9 i×49 9	4572	1	140 100	10.75 10.81	224.12 223.77	196+69	331.14	37	1	3	3	2 0	16	
1 I 1 1	4:11:23 4:11:23	3 N49 3	4572	1	100 100	10+69 10+75	225+09 225+35	191•92	331.56	37	1	3	2	19	15	
12 12	4:11:2 4:11:2	7 N49 7	4572	1	160 100	10.69 10.69	226.23 226.05	191.92	331.56	37	o	3	3	18	10	
13 13	4:11:3: 4:11:3:	149 1	4572	1	160 160	10-62 10-62	227.29 227.55	191•92	331.56	37	1	3	Э	17	14	
14 14	4:11:39	5 1.49 5	4572	1	100 121	10+56 10+62	228+43 228+43	191.92	331.56	37	1	3	2	55	19	
15 15	4:11:39	9 1.49	4572	1	121 100	10.50 10.56	229.57 229.92	191+92	331.56	37	1	3	3	18	14	

6-4. FLIGHT HISTORY II

.

.

.

BLIP-SCAN WITH TAB CRAST IS +984 BLIP-SCA, WITHRUT TAB CRAST IS +984

TRACKING STATISTICS:

.

NUMBER OF TARGET REPORTS FOR THIS FLIGHT IS 182	I			
PROBABILITY OF FALSE TARGET PER SCAN IS .055				
AVERAGE RUN LENGTH PER SCAN IS 19.5				
AVEPAGE HIT LENGTH PER SCAN IS 15.0				
ROUND RELIABILITY IS 76+6 PERCENT				
TARGET DETECTION PROBABILITY PER SCAN IS .973				
PROBABILITY OF STRONG TARGET PER SCAN IS .637				
DISTRIBUTION OF VALIDITY INDICATORS (PERCENT)	0	1	2	3
VA	• 0	•5	•0	99.5
vć	6.0	11+0	44.5	38.5

TARGET STATISTICS:

FLIGHT SUMMARY

.

.

SUP-SYSTEM 1 ASSINCED BEACEN CODE 4572 TAPE 10: 9048 FILE 1 SEGMENT 1 PAGE 41 SCAN TIE ACID RBC RANGE AZIMUTH VELOCITY DIRECTION FIRM W/S VA VC RUN HIT C ALT 4:22:30 149 4572 274.48 181 1 003 12.50 229.81 150.69 37 274.39 181 4:22:30 ġ9 12.56 З 1 2 16 13 273.43 182 4:22:34 1 099 12.37 231+20 149 4572 151.88 37 182 4:22:34 3 12.37 273.34 3 2 20 18 1 183 4:22:35 1449 4572 272.37 1 003 12.25 235.97 151.53 37 183 4:22:38 99 12-25 272.29 1 3 2 20 17 184 4:22:42 1 099 12.12 271.32 149 4572 235+97 151.53 37 184 4:22:42 Ö. 12.12 270.97 0 3 0 29 22 270.09 185 4:22:46 149 4572 1 12.00 239.06 151.93 37 185 4:22146 270-53 100 12.00 1 3 2 21 18 186 4:22:50 49 4572 1 100 11.87 269.21 235+97 151.53 37 186 4:22:50 150 11.87 270.00 3 2 1 16 16 187 4:22154 N49 4572 1 150 11.75 268.42 229.81 150.69 37 187 4:22:54 141 11.75 268.33 3 1 2 19 15

•

measures of BCAS interference (North/South Pulse Kit and Active Modes) on the ATCRBS beacon environment. Information contained on the data extraction tapes includes:

DAS Replies - contain the beacon code or altitude, range, emergency and radio failure indicators, and a garble indicator.

Target Reports - contain range, altitude, beacon code, azimuth and VA and VC validity indicators.

Track Messages - contain the highest order of data output and provide an indication of what the controller sees on his DEDS console.

Sector Times - contain the time a sector boundary is crossed (every 11.5°; i.e., 32 times per scan). The time recorded is the ARTS III System Time which is generally the current Greenwich Mean Time.

For the NAFEC ARTS III system, a modification was made to the software to extract additional ARTS III data base information. This data included ARTS III generated target run length and number of hits on a per target basis. This is important information, since it provides the analyst with the actual number of replies correlated each scan for each target and the total number of interrogations between the first and last reply correlated for each target on each scan (run length).

A brief description of the major data reduction programs follows.

6.9 FLIGHT HISTORY PROGRAM

As the name of the program indicates, a flight history listing outputs pertinent information for the particular segment of interest (i.e., from $t_i - t_f$), with the entries in numerical ascending sequence of scan numbers for the specific aircraft, and the aircraft ordered by beacon code. Figure 6-3 shows a segment of a typical flight history for aircraft N49 reporting on beacon code 4572. The first data time is the ARTS III track report for the specified scan; it is followed by the corresponding target report generated for the same scan. Note that in scan 4, an additional target report was generated due to target splitting. It is evident from examination of range and azimuth data which of the target reports is true and which is false.

Figure 6-4 shows a continuation of the same flight segment for aircraft N49 and contains performance measurements statistics for the flight segments as follows:

NT	number of target reports
NF	number of false targets
PF	probability of false target per scan
RL	run length
NH	number of hits
RR	round reliability
PD	probability of detection

PS probability of strong target.

Of the eight performance measurements, the most important ones are run length, number of hits, and round reliability. Round reliability is defined as the probability that the transponder will reply to a detected interrogation and that the resulting reply will be detected by ATCRBS. Lowered round reliability affects the ATCRBS system in three ways: First, it reduces the number of hits in the reply sequence, thereby creating holes in the sequence and hindering target detection and code validation. Second, it can produce a random distribution of misses which may alter the apparent target centroid, thereby limiting azimuth accuracy. Third, it can cause azimuth splitting (i.e., multiple declarations of the same target).

6.10 CHRONOLOGICAL SCAN PROGRAM

The chronological scan listing (see Figure 6-5) contains the same pertinent information as the flight history listing;

5118 - SY	OTEM 1	SCAN 1	TAPE	10:	6232	FILE	3 SE(GMENT	1							PAGE	2
ABC	TIME	ACID	FLG	c	ALT	RANGE	AZIMUTI	н	SPR	LPR	SPA	LPA	W/S	٧A	VC	RUN	HIT
	0				0	37.14	309.5	5					1	3	o	17	15
3540	3: 3:20		1		U			-	97	1.60	20.30	54.05					
1276	3: 0:17	TSC1276	1	1	0	1.31	38.2	3	•07	1103	20030		1	3	0	21	17
1603	3: 0:19		c		97	19.19	255.7	6					1	3	3	22	50
2552	3: 0:17		o		114	30.56	56.0	7					1	3	3	53	20
2634	3: 0:16		с		116	58.94	28.3	9					0	3	3	15	13
25 40	3: 0:18		ç		350	24.69 24.75	135.3	15					1	3 3	3 3	24 25	21 22
2640	3: 0:18		U		350								1	3	3	19	16
2677	3: 0:18		0		382	30.44	133+9						-	2	2	18	16
2767	3: 0:50		0		235	51+87	354+0	22					1				
3216	3: 0:20		0		163	20.44	341.8	39					1	3	3	12	19
3224	3: 0:16		э		162	41.12	35.2	24					1	3	3	20	19
3343	3: 0:20		٥		51	42.00	296.2	28					0	3	3	13	13
3346 3346	3: 0:18 3: 0:18	TSC3346	1	1	0	35.94 36.06	174.9 176.2	22 22	35.56	36.25	173.85	176+04	0	3	0	7	5
3354	3: 0:19		٥		96	48.37	274.2	22					1	3	3	20	19
3374	3: 0:20		с		190	4.37	289.4	42					0	3	2	14	13
35+3	3: 0116		o		83	22.56	18.0	02					1	3	3	20	19
4120	31 0116		1		0	1.12	25.4	40					0	3	0	12	10
	31 6116		1		0	1.12	21.7	71					1	3	0	27	19
4777	3; 0;19		- C		19	38.81	236.0	60					0	3	3	13	12

.

FIGURE 6-5. CHRONOLOGICAL SCAN

169

however the data is output by scan number, with the aircraft entries ordered by beacon code. Again, the same eight performance measurements are indicated and the associated statistics relate to the specified scan.

6.11 REPLY/TARGET REPORT

A typical printout for the reply/target report listing is shown in Figure 6-6. This listing indicates the mode and azimuth of each interrogation and the altitude, transponder code, and range of all replies received from that interrogation. Since it is not necessary to print out interrogations that do not result in reception of replies, a column has been added on the far right indicating the number of sequential interrogations with no replies. This information tells the analyst the number of interrogations that have elapsed since the last received reply without actually printing out these interrogations. Target report messages are interspersed in the listing and contain run length, number of hits, and the sequential interrogation pattern of replies correlated to the target report. The target report messages are identified numerically and their correlated replies have the same numerical identification; where appropriate, reply data is indicated fruit (F) and garble (G).

6.12 FLIGHT STATISTICS

The Flight Statistics Program calculates quantitative measures of BCAS interference on the ATCRBS beacon environment. During interference testing of the North/South Pulse Kit, of High Rate of Active Interrogation and of Manual Mode of Active Interrogation, the system under test undergoes short periods of time (30 seconds to a minute) of alternate "ON" and "OFF" cycles. Information is collected on the ARTS III data extraction tapes and is subsequently processed by this program for consecutive ON/OFF cycles. Figures 6-7 through 6-9 show typical output listings. Figures 6-7 and 6-8 contain the eight performance measures of the

FIGURE 646. REPLY/TARGET REPORT

	Calar 1	FEET	~ILES	PEGREE	S TANGET		VA	VC				
				_								
		INTERS.	A	336+27						0		
	31	REPLY	-			2662		36+2	5	•		•
	21	PEPIV	Ç	15 + 6 t t.	2200			38.2	5	Ũ		4005401144 0004357241
:	51	INTERN		336.80	2-00			1012	-	0	•	
	31	REPLY	^			2662		38.2	5	•		
	••	INTERG.	4	336+97					-	٥		
	31	REPLY				5995		38+2	5			
		INTERR.	с	337-24						٥		
	31	REPLY			2500			38 • 2	5			4005401144 0004357641
15	136:42+84						•	-	.5	133733		
	31 2005	27 21	•25	333.92	10:30:45:04		3	3	15			
-	F	DEBI V	A	341.81		1 200		34 - E	6	13		
	· 15	3EPL V				1200		30.7	5			
	3.	INTERC.	4	342+33					-	1 .		
	F	REFLY				1200		26.5	D	-		
	36	REPLY				1200		30.6	9			
		INTER:	A	342.51						0		
	35	REPLY				1200		36.6	9			
	- •	INTERG.	*	342+95					n	1		
	32	REPLY		343 31		1200		30+6	-	•		
			•	343-61		1200		30.4	•	v		
	35	INTER.	~	343.48		1200		30.49	-	0		
	- 13	REPLY	L	343040	3800			27.9	•	•		4014100677 0004364201
	3-	INTERS.		343.65	- ••					0		
	35	REPLY				1200		30.7	5			
		INTERG.		343+92					-	0		
	35	REPLY				1200		30+7	5	_		
	-	INTERC.	c	344+18						0	C+081 55	30074004EC 0004344401
	G	4EPLY			1900			20.5	5		GADRIED	AC54100677 7007400650
	3	1111600		344.34	27200			6742		0		
	23	AFPL V	^	344.30		1700		27.8	7	U		
	72	REPLY				1200		30.6	9			
		INTERR.		344+62						0		
	33	REPLY				1700		27.9	•			
	32	REPLY				1200		30.7	5	_		
		INTERR.	C	344+88						0		7494499469 0004346301
	ē	REPLY			1200			26+5	2		GARBLED	4054100677 7006400650
	G	REPLY		A/	e1200			2/19	•	0	GARBLED	90041008// /000400800
		DEDIA	•	342000		1200		26.5	6	v		
	้วจ	REPLY				1700		27.8	,			
									-			

G"T "ESSACE "90E AZIMUTH ALTITUDE TRANSPONDER RANGE SEQUENTIAL INTERROGATIONS GARBLE HRIMINISEC TYPE A/C (DEGREES) (FEET) CODE (4.4.4.) WITH NO REPLY INDICATOR ID MEACHT ALT HANGE AZIMUTH TIME OF CODES HITS LENGTH PATTERN FOR TARGET REPORTS EPODE INCIS - MILES DEDEES TARGET VA WE

· ·

.

•

.

t
									- · · · ·
	CODE	NT	NF	PF	RL	NH	RR	PD	PS
	0303	24	0	•000	24-250	16++58	67•869	•960	• 458
	0503	25	0	•000	27.560	24+400	88+534	1.000	•880
	0506	25	0	+000	25 -0 40	23+360	9 3+ 29 1	1+000	·1+000 ·
	0520	25	0	•000	20.120	18.160	90.258	1.000	•680
	0560	24	0	•000	22 • 208	21.208	95+497	+960	•958
	1607	24	0	•000	24•292	50•333	83•705	•960	•833
	1611	24	0	• 000	22+583	19+458	86+162	•960	•708
	1612	24	0	+000	26•333	21+000	79+747	1.000	+875
	1625	- 25	0	•000	· · · 24 • 2 + 0 · · ·		87+129	1+000	
	1641	55	0	• 000	22.636	19+409	85+743	+917	+773
	1643	25	0	•000	27=440	23.680	86+297	1.000	• 920
	1706	24	0	•000	21•792	18+542	85+086	•960	•792
	1743	· 6	1	•167	16 #333	11+833	72+449	1+000	+167
	3015	18	1	•C56	36+111	25 • 4 4 4	70+462	•720	•167
	-3057	·- 25 ·	0		- 53-350	-18+560	79+ 58 #	1+900	-+680 -
	3366	25	5	•200	29.920	55.580	74+465	1.000	•720
	3377	24	0	•000	22+458	19 •79 2	88+126	#96 0	₹875
	3404	20	0	•000	17.500	15.500	88+571	.800	++00
	3464 "	24	0	• 000	17.000	15+958	93+873	1+000	+5+2
	3535	6	1	•167	31.500	17.000	53+968	•273	+667
	35+0	24	· · O	· ♦000 · ·	31+292	- 25+875	· -82+690 ·	····· ··· · ····· ····················	··· •667
	3541	24	0	•000	25.250	21 • 125	83+663	•960	• 958
	4150	24	1	•042	29+250	23.042	78+775	•960	····792
	4266	24	6	•250	32+042	25 • 833	80.624	•960	•500
	4325	25	1	····•040	2 9+280	22+360	76+366	1 - 000-	······································
	4354	25	1	•040	30.320	24 • 960	82•322	1.000	•600
• • • •	4520		· · · 0 ·		22+571	20+71+	911772	955	+857
	4521	25	1	•C40	25.800	22.000	85+271	1.000	.800
	5101	25	0	•000	51+580	19+600	92+105	1-000	•920
	5110	15	0	•000	21.200	18+200	85+849	1.000	•667
•··•	-5336 -	- 24	• 0	- 000 · ·	<u>20</u> -958	-20-125	- 96+024		
	5340	25	1	•040	23.880	20.960	87 • 772	1.000	•880
	-5513		···-	•000 -			- -94+309		•792
	6206	55	0	•000	31+273	24 • 864	79+506	+917	• 364
	7202		· • •	€000	31++17	-21+833	- 6 9+496	•960 ···	
	7532	55	0	•000	23.818	17+682	74•237	.880	•545
	- 7537	55	0 -		- 21 . 727		·77 *82 4		

. . .

•

SUBSYSTEM 1 SEGMENT 1

172

6-7. FLIGHT STATISTICS I

· · ·	· ·		05	D:	NH	RR	PD	PS
CODE	NT	NF	PF					
	_			29.447	18+417	62.079	.923	• 333
0303	24	0	•000	21.120	26.800	86+118	1.000	•840
0503	25	0	•000	34.392	24.147	91.918	.960	+958
0506	24	0	•000	21-400	19-800	92.523	1.000	+80C
0520	25	0	• 500	211400	26.400	92+618	1.000	•760
0560	25	. 0	•000	20.720	18.020	a1.693	1.000	•760
1607	25	0	.000	23+100	17-680	R1+868	-962	•600
1611	25	0	•000	21.840	17 800	87.073	1.000	1.000
1612	26	0	•000	25.885	26+330	65-804	1.000	-+880
1625	25	0	•000	25.360	210780	97.205	1.000	.962
1641	26	0	•000	22.846	17.923	87.205	1.000	1.000
1643	24	0	•000	25+708	23.000	87.924	1.000	•731
1706	25	20	•769	22.192	174966	70 054	-940	•708
1743	24	0	.000	25.542	20+16/	/8:300	. 808	.000
3015	21	6	•586	37.095	25.095	6/ 651	-020	+870
3057	23	0	•000	25++35	-21+04-	80 155	1.000	.923
3366	26	0	•000	28.000	22.808	81+430	1-000	-968
3377	25	0	•000	24+040	22.400	93+1/8	10000	.267
3404	15	0	•000	16.333	14.000	85+/14	.043	.790
3464	25	0	.000	19=400	17.320	89-278	1702	.500
2535		Ó	•000	33.500	15+667	46./00	• 2 / 3	
3035		· ·· 0 ·	· ·- ·- ·	· -26+583		91+379		- 940
3540	25	ċ	.000	29.400	22.280	75.782	• 962	. 220
5341	25	ō	.000	3 5 •080	27.920		1.000	4320
4130	13	ň	.000	25.769	20+846	80 • 896	•650	•076
4200	25	1	040	25+400	55+500	87.402	1.000	700
4323	25	å	.000	29.500	23+417	79•379	•960	•/92
4354	25			25-560 -		94+210- ·	1-000	1-000
4020		0	-000	25+652	22.000	85•763	.920	•8/0
4521	23	, v	- 077	23.115	20.192	87•354	1+000	•8 46
5101	20	- E	-000	18.500	16+818	90.909	• 8 4 6	+545
5110	22	0		24.600	22+640	9 2.033	1.000	1+000
5336	-25	0	.000	24.154	21.577	89.331	1.000	•923
5340	26	Ŭ	-050		16-550 -			+ 650
5513	50	· · · - · · · · · · · ·		30.769	27.000	87.750	1.000	•731
6206	26	0	+000	20.459	21.833	71+683	+923	
7202	-24	. 0		35.482	21.261	82+881	•885	•826
7532	23	<u>o</u>	.000	23.834	-18+000	75+547	920	· +783··- ·
- 7537	- 53 -	Q	•UUU	234024	10,000			

FIGURE 6-8. FLIGHT STATISTICS II

173

.

indicated aircraft for the ON and OFF cycle respectively. Figure 6-9 denotes the mean and standard deviation of the eight performance measurements for the contiguous ON and OFF cycles.

6.13 WIDENED AZIMUTH WINDOW

The Widened Azimuth Window Program processes target report messages of aircraft that are present in the widened azimuth window of BCAS. In processing these aircraft (beacon codes), range, azimuth and altitude data are listed (see Figure 6-10) with respect to OWN and generates corresponding TOA's, DAZ's, Ranges and Bearings.

6.14 X&D₁ PULSE ANALYSIS PROGRAM

This program analyzes the current erroneous use of the X and D_1 pulses in the transponder reply train as a means of assisting the analyst in determining the viability of the use of these pulses to indicate the direction of potential maneuvers of BCAS equipped aircraft.

	!		
4.029 4.029 4.029	9	0	Ì
23•351 •811 •033	25•838 21•329 83•422 •927	164	
•			i
4 • 531 1 • 28 3 • 062		• 210	•
22.541 5544 028		• 708	
1- 12 U Z Z Q	₩ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	හ 2	

FLIGHT STATISTICS III FIGURE 6-9.

175

1 1 1

i

;

SEGMENT-2 --

---HEAN DEVIATION

ł.

MEAN DEVIATION

QUANTITY

•

SEGMENT 1

, NO ł

i

ĺ

OFF

÷

:

1

1

,

Ì

ļ

!

٠

i

i

i

i ;

SUBSYSTEM 1

.

:

777 12:	8:21.367	12+1875	287.930	21							
				= 1	+0329)	62.671	-10.547	5+4575	273+007	14	10
363 12:	8:21.492	55+6875	292.148	238(3.9170)	596 • 383	-6+328	48.3521	291 • 194	12	A+CAAC+A+A+CAA 8
311 12:	8:21.492	7.5000	298+477	105(1.7281)	•000	•000	+0000	UNDEF INED	17	CA++A++AA+AAC+AC 9
757 12:	8:21.633	18.0625	304.805	304(5.0032)	131+C43	6•328	10+6501	309.358	21	A+CA+++A+A+C+A+AA 11
772 12;	8:21.633	28.6250	308.496	81(1.3331)	263+001	10.020	21.4483	311+891	AC 14	AA.CA.C.A.A.CA 11
											A C . ACAACAACA A

FIGURE 6-10. WIDENED AZIMUTH WINDOW

176

7. NAFEC PROGRAMS

7.1 NAFEC-BCAS PROGRAM

The following data reduction and conversion programs were used at NAFEC and provided the described outputs:

- EAIR program provided unsmoothed positional coordinates X, Y, Z, in one-tenth second increments, in binary or binary coded decimal format. Data was usually rotated and translated to the reference coordinates of the ASR-5. Tapes and hardcopy printouts were provided to TSC.
- 2. NAFEC Geodetic Position Coordinate Program provided coordinates for the Mizpah reference transponder relative to the ASR-4 and ASR-5.
- 3. BCAS Data Reduction Program converted the octal format of the BCAS data tape to a specified hard copy printout format.
- 4. BCAS-ARTS III Data Reduction Program provided beacononly target report data and derived values of TOA and DAZ. This program was used with the standard ARTS III dual beacon data extractor and the TSC modified version (A09).
- 5. BCAS-ARTS III Error Program this program is an error prediction model of ARTS III for inputs of aircraft geometrics (2) and error statistics (slant range, azimuth, and altitude). Predicted error statistics of ARTS III derived range separation, time of arrival, and differential azimuth were obtained. Two versions of the program were written; one to be used on the NAFEC 9020 computer and another provided to TSC together with a typical case printout.

177

7.2 NAFEC DATA ANALYSIS

During the test program a number of different statistics were computed. The major analyses made at NAFEC were:

- 1. Comparison of range and azimuth reported by ARTS III with EAIR data.
- 2. Comparison of TOA and DAZ as measured by the BCAS equipped aircraft, in flights past the fixed transponder at Mizpah, with EAIR derived TOA and DAZ.
- 3. Comparison of TOA and DAZ as measured by BCAS with ARTS III derived TOA and DAZ.
- 4. Comparison of ARTS III, EAIR and Phototheodolite data for the following purposes:
 - a. to qualify the ARTS III target report data in terms of mean and standard deviation estimates for errors in range, azimuth and differential azimuth
 - b. to investigate the correlation between different sets of ARTS III azimuth data.

APPENDIX A: POTENTIAL IMPACT ON BCAS PERFORMANCE DUE TO ATCRBS IMPROVEMENTS/MODIFICATIONS

1. INTRODUCTION

A number of improvements and modifications are being implemented or planned in the ATCRBS system to overcome or mitigate present system problems. In this Appendix, a selection process is carried out to determine which improvements have a potential impact on BCAS operation and the related actions required. In FAA ORDER 6360 "Air Traffic Control Radar Beacon System (ATCRBS) Improvement Program", the problems in the present ATCRBS system are identified and described. To solve these problems, a number of solutions, improvements and modifications are proposed, as described in the above cited ORDER. In Table I are listed the identified problems and in Table II are given, in matrix form, the proposed solutions versus the problems to be solved. These various categories of improvements/modifications are examined to determine which ones have a potential impact on BCAS and deserve further studies and analysis.

2. CATEGORIES OF ATCRB IMPROVEMENTS/MODIFICATIONS

As shown in Table II, ATCRBS improvements are divided in three general categories:

 CATEGORY A: - Alignment, Maintenance, Evaluation of Present System.
 CATEGORY B: - Optimization of Present System Environment.
 CATEGORY C: - Upgrade System Hardware/Software.

Fourteen (14) proposed improvements/modifications are listed under these categories. In FAA ORDER 6360 a number of actions are recommended under each of these 14 items. Only the relevant improvements/modifications to the problem at hand were abstracted for assessing their potential impact on BCAS performance. In Table III these selected items are listed alongside with the identified potential impact on BCAS and the actions to be taken. Four (4) items appear to have a potential impact on BCAS operation:

A-1

TABLE I. DESCRIPTION OF ATCRBS PROBLEMS

- a. False targets caused by reflections
- b. False targets caused by sidelobes
- c. Erroneous or missing Mode C replies
- d. Double targets
- e. Azimuth splits
- f. Loss of targets caused by holes in coverage pattern

- h. Loss of targets caused by reduced low-angle coverage
- i. Phantom target reports and garbled code data

g. Range splits

j. False targets caused by synchronous fruit and secondtime-around replies

I	••	°	7.	•	5	•	ω •	2.		ų		
	False Targets caused Synchronous Fruit	Phantom Targets. Garbled Codes	Loss of Targets	Range Splits	Azimuth Splits	Double Targets	Erroneous/Missing Moo C Replies	False Targets caused Sidelobes	False Targets caused Reflections	PROBLEMS	SOLUTIONS	
	Ъу						le	by	Ъу		_	
			×			×	×	×	х	A1.	Test Equipment	TA
			×			X	×	×	x	A2.	System Performance	BLE
	×		×					×	х	A3.	Power Reduction	H
		X	×		х	×	×	×	х	A4.	Transponder Improvements	0
			×	x		×				A5.	Site Standardization	ROSS-I
	×		×			×	X	x	Х	A6.	Site Technical Inspection	REFERI
			х	X	х		×		Х	B1.	Parameter Optimization	ENCE :
			х		Х			X	Х	B2.	Improve Site Environment	PROI
				X	х			х	X	B3.	Discrete Code Allocation	SLEMS
			Х			х	Х	X	X	C1.	Improved Antenna	vs. s
		×	×	×		L	×			C2.	CD Modification	SOLU
			×			×	×			С3.	ARTS Modification	TIC
			×			x	X	Х	х	C4.	Software Enhancement	SNI
	X		X			х	X	X	X	C5.	Interrogator Modification	
	-		-									

TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS

Category A. (Alignment Maintenance, Evaluation)	Relevant ATCRBS Improvements/Modifications	Potential Impact on BCAS	Action Required
A.1. Test Equipment 1) Provide Properly Calibrated Test Equip. for Site Evalu- ation and Maintenance	• Upgrades Hardware Perfor- mance	• Beneficial	• None
A.2. System Performance/Certi- fication Parameters 1) Upgrade Maintenance and Certification Proceedures	 Upgrades System Perfor- mance 	• Beneficial	• None
A.3. Power Reduction 1) Reduce Power to Minimum Requirements.Adjust DIREC/ OMNI. Power Ratio	 Reduces Interference Improves Side Lobe Suppression 	 Reduce Coverage Area. Reduces Range of SLS Signal. 	 Assess Impact on Coverage
 A.4. Transponder Improvement 1) Assure Proper Operation of Transponders. 	• Tighten Federal Standards • Upgrade Testing	• Beneficial	• None
A.5 Site Standarization 1) Improve Cabling, Equipment Interfaces	 Improves Grounding, Hardware Performance. 	• Minimal	• None
A.6. Site Technical Inspection 1) Provide Site Evaluation Routine	 Upgrades Maintenance, Performance 	• Beneficial	• None

A-4

,

.

TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

•

Category B. Optimization of System/Enviroment	Relevant ATCRB Improvements/Modifications	Potential Impact on BCAS	Action Required
 B.1. Parameter Optimization 1) Optimize Interrogator PRF, Scan Rate, Mode Interlace, Detection Algorithm 	 Improve Target Detection Validation 	 None-(Unless Such Parameters are Used <u>a Priori</u>) 	• None
 <u>B.2. Improved Site Environment</u> 1) Reduce/Eliminate Effect of Obstructions, Reflections. 	 Remove Site Obstruction Shield Surfaces Relocate Radar Site if Necessary 	 None-(Unless Radar Location <u>is Used a</u> <u>Priori</u>) 	• None
 B.3. Discrete Code Allocation 1) Eliminate Duplication in Code Assignment 	 Allocate Codes To Avoid Duplication Allocate Code 1220 for Permanent ECND 	• Beneficial	• None

<u>Category C. Upgrade System</u> Hardware/Software	Relevant ATCRBS Improvements/Modifications	Potential Impact on BCAS	Action Required
 C.1. Improved Antenna 1) Develop an Improved Antenna System 	a) Minimizes Vertical Lobing b) Incorporates Rotary Joint for Either "Integral" SLS or Monopulse Operation	a) Beneficial b) Unknown	a) None b) Assessment and Analysis
C.2. CD Modifications	 Beacon Reply Group Hardware Modifications 	• None	• None
C.3. ARTS Modifications	 Improve Target Detection and Code Processing 	• None	• None
C.4. Software Enhancement	 Improve Target Validation and Monitoring 	• None	• None
C.5 Interrogator Modifications Modify Interrogator; Improve Monitoring 	a) Provide Stagger/Destagger Capability to all ATCB1-3. Stagger the Mode Interro- gation Signals by at Leas 25 usec.	a) Improves Radar Selection/Discri- mination	None (Unless PRF, Information is used a Priori)
	 b) Azimuth Gate the Power Output or STC Curve To Reduce Site Specific Reflections and Synchron- ous Interference From Adjacent Overlapping ATCRBS 	 b1. None For STC Gating b2. If Power Gated no Radar Signals Available At Some Azimuth. 	bl. None b2. Site Specific Study and Analysis

TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

A-6

TABLE III. ATCRBS IMPROVEMENTS AND POTENTIAL IMPACT ON BCAS (Cont.)

Category CCONTINUED	Relevant ATCRBS Improvements/Modifications	Potential Impact On BCAS	Action Required
	c) Install False Target Sup- pression Transmitter (Trevose Fix) for ATCRBS Sites with well Defined Reflection Problem. System Consists of a Directional Horn and an SLS/ISLS Transmitter Used to Suppress Aircraft Transponders in Area of Reflection and False Target Generation	c) Unknown-May Generate Blind Spot	c. Site Specific Study and Analysis.

- A.3. POWER REDUCTION
- B.2. IMPROVED SITE ENVIRONMENT
- C.1. IMPROVED ANTENNA
- C.5. INTERROGATOR MODIFICATIONS.

These four "filtered" items are summarized in Table IV for further assessment and analysis.

The actions required can be divided into three areas. a) updating BCAS files b) coverage studies c) ATCRBS signal structure.

a)	UPDATING BCAS FILE	B.1	PARAMETER OPTIMIZATION
	(NO ACTION REQUIRED)	B.2	IMPROVE SITE ENVIRONMENT
		C.5	INTERROGATOR MODIFICATIONS(a)

Category B.1 involves optimization of PRF, scan rate and mode interlace; category B.2 relocation of radar site; category C.5. a, installation of PRF stagger/destagger capability. At the present time, BCAS operation is independent of such improvements/modifications. However, utilization of such information a priori would require merely updating of BCAS file.

		A.3	POWER REDUCTION (a), (b)
b)	COVERAGE STUDIES	C.5	INTERROGATOR MODIFICATIONS
			(b2), (c)

In category A.3, power levels will be reduced to minimum requirements to reduce interference. This will also reduce coverage area. Therefore, BCAS coverage calculations should be based on these eventual minimum range requirements. In category C.5. b2, gating power at a specific azimuth will affect the corresponding coverage area. This is a site specific problem that needs to be analyzed for the impact it may have on BCAS operation in a particular area. Category C. 5c is also site specific and should be analyzed for the specific conditions.

A - 8

Category	Relevant Improvements	Potential Impact on BCAS	Action Required
A.3. Power Reduction	 a) Reduce Power Level to Minimum Requirements b) Adjust Directional/OMNI Ratio to Required Standards 	a) Reduce Coverage Area b) Reduce SLS Signal Detectability	a) Assess Impact on Coverage bl) SLS Signal Detectability
B.1. Parameter Optimization	a) Optimize, PRF, Scan Rate Mode Interlace	None (Unless Such Data is Used a Priori)	None (Update BCAS if Such Data is Used a Priori)
B.2. Improved Site Environment	a) Relocate Radar Site if Necessary		
C.1. Improved Antenna	 a) Minimizes Vertical Lobing b) Incorporates Rotary Joint for Either "Integral" SLS or Monopulse Operation 	 a) Improves Reception b1) Impact of "Integral" SLS Unknown b2) Fewer Pulses/Scan Impact Unknown 	bl) Assess Impact "Integral" SLS B2) Analyze Impact Monopulse Opera- tion
C.5. Interrogator Modifications	 a) Provides Stagger/Destagger Capability to All ATCB1-3 Stagger the Mode Interroga- tion Signals By at Least 25 usec. b) Azimuth Gate the Power Out- put or STC Curve to Reduce Site Specific Reflections and Synchronous Inter- ference From Adjacent Over- lapping a TCRB. c) Install False Target Suppre sion Transmitter (Trevose F for ATCRB Sites with Well Defined Reflection Problem. System Consists of a Direc- tional Horn and An SLS/ISLS Transmitter Used to Supress Aircraft Transponders in Ar of Reflection and False Tar Generation. 	 a) Improves Radar Selection/Discrimination b1) None for STC Gating b2) For Gated Power Radar Signals May-not be Available at Some Azimuth c) Unknown-(Intruder Airs-craft May Not Respondix) Blind Spot) 	 a) None (update BCAS if Such Data is Used a Priori) b2) Site Specific Study and Ana- lysis Site Specific Study and Analysis

TABLE IV. SELECTED ATCRBS CATEGORIES WITH POTENTIAL IMPACT ON BCAS PERFORMANCE

c) ATCRBS SIGNAL STRUCTURE C.1 IMPROVED ANTENNA (b1), (b2).

Category C.1 improvements, if implemented, may result in either "Integral" SLS and/or monopulse operation. The word "integral" implies that the phase centers of SSR main beam antenna and the omni-directional antenna will be the same. This should provide a better match between the main beam and the omni vertical lobing pattern. However, with an "Integral" SLS, the side lobe suppression signals may be available in a restricted azimuth only. Thus, an assessment needs to be made of the resultant potential impact on BCAS operation.

The impact of monopulse operation is also unknown and an assessment needs to be made to determine the impact of this modification on BCAS performance.

3. SUMMARY

The on-going improvements in the ATCRBS system were examined and their potential impact on BCAS operation assessed. The "selected" improvements that might impact on BCAS operation are summarized in Table V. Item 1 does not require any action since in the present design BCAS operation is <u>independent</u> of these improvements/modifications. Updating of BCAS file would be required only if such information were used a priori. Item 2 requires overall and some site specific coverage studies. Item 3 requires a) the assessment of "Integral" SLS on BCAS operation and b) an evaluation of monopulse operation on BCAS performance.

On the basis of the above examinations of the planned ATCRBS improvements/modifications, the two areas of potentially greatest impact on BCAS operation are 1) implementation of an "integral" antenna system and 2) monopulse operation in which fewer interrogations pulses per scan may be transmitted.

In the passive mode of operation, BCAS relies on the transmitted interrogation and SLS signals for acquisition, and tracking of ground radars, timing and bearing determination. Any such planned improvements/modifications that result in modification of these signal characteristics/patterns must therefore be thoroughly examined and evaluated.

TABLE V. SUMMARY OF SELECTED CATEGORIES WITH POTENTIAL IMPACT ON BCAS OPERATION

Category	Relevant Improvements	Potential Impact on BCAS	Action Required	
1. <u>B.1 Paramater</u> <u>Optimization</u>	Optimize, PRF, Scan Rate, Mode Interlace	Beneficial	None (Update BCAS File if Such Information is	
<u>B.2 Improve Site</u> <u>Enviroment</u>	Relocate Radar Site if Necessary	Beneficial	Used a Priori)	
<u>C.5 (a) Interrogator</u> <u>Modifications</u>	a) Provide PRF Stagger Destagger/ Capability	a) Improves Radar Identi- fication/Discrimination		
2. <u>A.3 (a) Power</u> <u>Reduction</u>	a) Reduce Power to Minimum Requirements	a) Reduces Coverage Area	a) Assess Impact on Coverage-Range of SLS Signals.	
<u>C.5 (b)(c) Interrogator</u> <u>Modifications</u>	b) Azimuth Gate Power Output c) Trevose Fix	 b) Reduce coverage at Some Azimuth c) Suppresses Transponder Replies at Some Azimuth- Impact Unknown 	 b) Site Specific Coverage Analysis c) Site Specific Study and Analysis 	
3. <u>C.1 (b) Improved</u> <u>Antenna</u>	bl) "Integral" SLS b2) Monopulse Operation	 b1) Unknown-Signals Radiate in Restricted Azimuth. b2) Unknown-Fewer Pulses Per Scan 	 bl) Assess Impact of antenna pattern b2) Assess Impact of Monopulse Operation 	

.

,

.

APPENDIX B. FLIGHT TEST PATTERNS

<u>PATTERN #1</u> - One or more aircraft. Approximately a 50 NM track along low altitude airway V467 in the vicinity of Millville, New Jersey. This airway utilizes the 047° radial and the 226° radial of the Millville VORTAC, MIV, frequency 115.2, channel 99. Airspace required: 30 NM NE to 20 NM SW. Altitudes, between 3500 feet and 21,000 feet.

<u>PATTERN #2</u> - One or more aircraft utilizing the basic fix at Millville, New Jersey VORTAC, radial 040° - 055° - 220° - 235° (Figure B-1).

Radius of action can vary to that desired for data collection purposes. Airspace altitude required same as Pattern #1. This pattern can be displaced and/or rotated to any basic fix at any location based on test requirements. Once aircraft are established in basic figure eight, the pattern remains the same until test requirements dictate otherwise.

FIGURE B-1. PATTERN #2

<u>PATTERN #3</u> - This pattern requires orbits, clockwise or counterclockwise around the modified beacon sites at Atlantic City, Philadelphia, and Newport (see test geometry chart). Radius of orbit and altitudes will vary according to data collection and test requirements. As other sites are modified, the pattern can be flown at those locations, subject to airspace approval.

<u>PATTERN #4</u> - This pattern can be flown by one or more aircraft and is normally used to obtain maximum lock/unlock information. Aircraft fly the normal enroute airway, V139, at various altitudes and shuttle between maximum and minimum (unlock/lock) range up to approximately 200 NM from NAFEC. The magnetic track from Atlantic City is approximately 216°. Maximum distance is in the vicinity of Norfolk, Virginia.

NOTE - These are the four basic patterns used in debugging and actual data collection flights.

<u>PATTERN #5</u> - This pattern will be used for multiple aircraft encounters within a 12 NM radius of the Millville VORTAC; however, it can be adapted for use over any VOR/DME fix. This is a modified rotating Double Daisy with each aircraft turning 30° in opposite directions to achieve encounters over the fix in 60° increments. Vertical separation between aircraft will be 400 feet and base altitude can vary between the low stratum of 3000 to 15,000 feet, or the high stratum between 18,000 feet and 23,000 feet. Planned leg distance is 8 NM plus turn radius. It is desired that 12 runs be flown at three different altitudes, low, medium and high. Twelve runs will provide \pm 180° of coverage twice, for repeatability data (See Figure B-2).

TABLE B-1. PATTERN #5

<u></u>	HDG.	HDG.		
ENCOUNTER	A/C #1	A/C #2	INTRCPT ANGLE	
1	270	090	180	
2	060	300	120	
3	210	150	60	
4	360	360	0	
5	150	210	60	
6	300	060	120	
7	090	270	180	
8	240	120	120	
9	030	330	60	
10	180	180	0	
11	330	030	60	
12	120	240	120	

B-3

FIGURE B-2. PATTERN #5

<u>PATTERN #6</u> - This pattern will be used for two aircraft to obtain radial environment data between the two modified radars located at Atlantic City and Philadelphia, a one-way distance of 30 NM. Aircraft #2 will be positioned 4 NM behind and 4 NM to the right of Aircraft #1. Three round trip patterns will be flown, one at each of three altitudes, 2000, 10,000, and 20,000 feet, $\frac{+}{-}$ 500 feet.

<u>PATTERN #7</u> - This pattern will be flown by two aircraft to determine multipath effects on the system performance. Altitude between aircraft will be 400 feet to 800 feet vertically with the basic altitude at three levels, 4000, 10,000 and 15,000 feet, [±] 500 feet. Radius of operation will be within approximately 15 NM of the Millville VORTAC. Aircraft without RNAV equipment will utilize DME and radials from the Millville VORTAC. Special requirements for the test are dry land conditions. Pattern shown in Figure B-3.

POINT	. !	DME FR FIX	N.M. SPRTN	HDG. A/C #1	HDG. A/C ∉2	
0		6.9	0.5	180°	180°	
. 1		3.9	0.5	Turn	Turn	
2		3.2	2.5	. 090°	270°	
3	·	4.4	6.5	Turn	Turn	
.4		4.7	8.5	180°	180°	
5		6.0	8.5	Turn	Turn	
6		6.5	10.5	090°	270°	
7	\	8.5	16.5	Turn	Turn	
8	,	8.5	16.5	290°	070°	
9		2.5	5.0	Turn	Turn	
10	•	1.5	3.0	360°	360°	
11		7.1	3.0	Turn	Turn	

TABLE B-2. PATTERN #6 AND #7

B-5

<u>PATTERN #8</u> - This pattern is identical to that described in pattern #7 with the exception that special requirements dictate the accomplishment over smooth water. Probable flight areas would be over the Atlantic Ocean in warning areas 107 or 108, or over the Delaware Bay. If RNAV is not available, DME/Radial from the Atlantic City, Kenton, Sea Isle, Waterloo VORS or Dover TACAN would have to be used for positioning. Pattern is shown in Figure B-3.

POINT	DME FR FIX	N.M. SPRTN	HDG. A/C #1	HDG. A/C #2	
0	6.9	0.5	180°	180°	
1	3.9	0.5	Turn	Turn	
2	3.2	2.5	090°	270°	
3	4.4	6.5	Turn	Turn	
4	4.7	8.5	180°	180°	
5	6.0	8.5	Turn	Turn	
6	6.5	10.5	090°	270°	
7	8.5	16.5	Turn	Turn	
8	8.5	16.5	290°	070°	
9	2.5	5.0	Turn	Turn	
10	1.5	3.0	360°	360°	
11	7.1	3.0	Turn	Turn	

TABLE B-2. PATTERN #6 and 7 APPLIES TO PATTERN #8 (Cont.)

FIGURE B-3. PATTERN #7

PATTERN #9 - This pattern requires two aircraft capable of altitude operation at 20,000 feet or better. Aircraft #2 will be positioned one NM to the rear and 400 feet above aircraft #1. throughout the flight. Both aircraft will start the pattern at 10,000 feet MSL over the Atlantic City VORTAC and climb outbound to approximately 23,000 feet on the Atlantic City VORTAC 216° radial to 145 NM DME. A left turn will be executed to proceed so as to intercept the Atlantic City VORTAC 190° Radial at 145 NM DME. (This point is the 112° Radial of the Cape Charles VORTAC at 71 NM DME). The flight will continue inbound toward Atlantic City on the 190° radial and while inbound, will execute two one (1) minute holding patterns to the west; one at 120 NM DME and the other at 70 NM DME. The flight will continue past Atlantic City to a point at 30 DME on the 010° radial of the Atlantic City VORTAC at which the flight will terminate. Pattern is shown in Figure B-4.

NOTE: Pattern requires penetration of warning areas 386, 107 and 108 and the Air Defense Identification Zone (ADIZ).

Warning Area Penetration:

- W-386: from 26 nm DME CCV (112°R) at 75° 30.0'W 37° 11.0'N East to 71 DME CCV (112°R), turn North at 74° 34.0'W 37° 04.5'N Holding pattern orbit at 120 nm DME ACY at 74° 34.1'W 37°28.8'N
- W-108: (leave W-386): 88 nm DME ACY (190°R)
 at 74° 34.2'W 38° 00.0'N
 Holding pattern orbit at 70 nm DME ACY
 at 74° 34.2'W 38° 18.0'N
 Leave W-108 42 nm DME ACY
 at 74° 34.3'W 38° 45.0'N
- W-107: From 20 nm DME ACY (109°R) at 74° 34.4'W 39° 07.0'N Leave W-107 15 nm° DME ACY at 74° 34.4'W 39° 12.3'N
- Atlantic Coastal ADIZ: From 32 nm DME CCV (112°R) at 75° 23.7'W 37° 09.3'N Leave ADIZ at 67 nm DME ACY (190°R) at 74° 34.3'W 38° 21.3'N And momentarily during second holding orbit

FIGURE B-4. PATTERN #9

.

PATTERN #10 - Rotating Double Daisy similar to PATTERN #5 except encounter angles are 30° instead of 60°. Aircraft #1 will execute all turns to the left and Aircraft #2 will execute all turns to the right. Aircraft #1 commences flying from 10 NM west of the VORTAC ground station to 10 NM east of the VORTAC station. While inbound to the station from the west, the bearing is 090°, which is the magnetic course he must fly to reach the station. After passing the station and continuing eastward, his VORTAC bearing is 270°. Upon reaching a point 10 NM east of the station, the pilot executes a 195° turn to the left, intercepting and positioning the aircraft inbound on the 075° radial of the station, or a bearing of 255°. After each traverse of the VORTAC station, at the 10 NM point, the pilot again executes a 195° turn to acquire a bearing to or a radial from the VORTAC station displaced 15° from the previous one. This process continues for a total of 12 transverses of the VORTAC station to complete 360° of coverage.

Aircraft #2 starts the pattern flying from 10 NM east of the VORTAC ground station to 10 NM west of the VORTAC station. While inbound to the station from the east, his bearing is 270°, which is the magnetic course he must fly to reach the station. After passing the station and continuing west bound, his bearing is 090°. Upon reaching a point 10 NM west of the station, the pilot executes a 195° right turn, intercepting and positioning the aircraft inbound on the 285° radial of the station, or a bearing of 105°. After each traverse of the station, at the 10 NM point, the pilot again executes a 195° right turn to acquire a bearing to or a radial from the VORTAC station displaced 15° from the previous one. This process, as that of aircraft #1, continues for a total of 12 traverses of the VORTAC station of complete 360° of coverage.

Usually this pattern requires both aircraft to maintain a constant airspeed, normally 150K, with 400 feet of vertical separation. The exceptions are runs numbered 7 and 19, which are tail-chase runs. During a tail-chase, aircraft #2 will increase speed to 230K and start the turn-in at a point 14.3 NM from the station instead of 10 NM. Aircraft #1 is designated as the control aircraft and calls each mile mark during each run. This allows Aircraft #2 to adjust speed so as to expect crossovers directly over the VORTAC station. (See Figure B-5).

As can be seen looking at Table B-3, this sort of pattern provides positive and negative intercept angle throughout a 360° azimuth area in 30° increments.

<u>PATTERN #11</u> - Two aircraft will be used for this pattern with the standard 400 feet vertical separation between aircraft. Normal operating area will be in the vicinity of the Millville VORTAC within a radius of 15 NM at an altitude above 9500 feet MSL. There are four types of encounter patterns to be flown, osculating (kissing), intersecting, coincident and reverse osculating. Eight of each type will be flown, for a total of thirty-two patterns with varying bank angles of 15°, 30°, 45°, and 60°, flown on each type. (60° bank angle exceeds that authorized for transport type aircraft, which is 45°). Pattern is shown in Figure B-6 and Table B-4.

A/C #1, LEFT TURNS. ENCOUNTERS 1 THRU 12. ENCOUNTERS 13 THRU 24 OPPOSITE DIRECTION OF ARROWS. A/C #2, RIGHT TURNS. ENCOUNTERS 1 THRU 12. ENCOUNTERS 13 THRU 24 OPPOSITE DIRECTION OF ARROWS.

FIGURE B-5. PATTERN #10

B-13

TABLE B-3. PATTERN #10

#10	ENCOUNTER	HDG. A/C #1	HDG. A/C #2	INTRCPT ANGLE
	1	090	270	180
	2	255	105	150
	3	060	300	120
	4	225	135	90
	5	030	330	60
	6	195	165	30
	7	360	360	0
	8	165	195	30
	9	330	030	60
	10	135	225	90
	11	300	060	120
_	12	105	255	150
	13	270	090	180
	14	075	285	150
	15	240	120	120
	16	045	315	90
	17	210	150	60
	18	015	345	30
	19	180	180	0
	20	345	015	30
	21	150	210	60
	22	315	045	90
	23	120	240	120
	24	285	075	150

B-14

FIGURE B-6. PATTERN #11

TABLE B-4. PATTERN #11

2	S P #	taging oint (SP			
	<u>#</u>	ITPE	SP-HDG/DME/RADIAL	SP-HDG/DME/RADIAL	BANK ANGLE
	1	0	246°-2.7-336°	246°-8.0-156°	15°
	2	I	246°-2.7-336°	246°-5.3-156	15°
	3	С	246°-2.7-336	246°-2.7-156	15°
	4	RO	246°-2.7-336	066°-8.0-156	15°
	5	0	246°-1.1-336	246°-3.3-156	30°
	6	I	246°-1.1-336	246°-2.2-156	30°
	7	С	246°-1.1-336	246°-1.1-156	30°
	8	RO	246°-1.1-336	066°-3.3-156	30°
	9	0	246°-0.7-336	246°-2.0-156	45°
	10	I	246°-0.7-336	246°-2.0-156	45°
	11	С	246°-07336	246°-0.7-156	45°
	12	RO	246°-0.7-336	066°-2.0-156	45°
	13	0	246°-0.7-336	066°-2.0-156	60°
	14	I	246°-0.3-336	246°-0.7-156	60°
	15	С	246°-0.3-336	246°-0.3-156	60°
	16	RO	246°-0.3-336	066°-1.1-156	60°
	17	0	336°-2.7-066	336°-8.0-156	15°
	18	I	336°-2.7-066	336°-5.3-246	15°
	19	С	336°-2.7-066	336°-2.7-246	15°
	20	RO	336°-2.7-066	246°-8.0-246	15°
	21 (0	336°-1.1-066	336°-3.3-246	30°
	22	I	336°-1.1-066	336°-2.2-246	30°

.

.

.

TABLE B-4. PATTERN #11 (CONT.)

S	Staging Point (SP)		
#	ТҮРЕ	SP-HDG/DME/RADIAL	SP-HDG/DME/RADIAL	BANK ANGLE
23	C	336°-1.1-066	336°-1.1-246	30°
24	RO	336°-1.1-066	246°-3.3-246	30°
25	0	336°-0.7-066	336°-2.0-246	45°
26	I	336°-0.7-066	336°-1.3-246	45°
27	С	336°-0.7-066	336°-0.7-246	45°
28	RO	336°-0.7-066	246°-2.0-246	45°
29	0	336°-0.3-066	336°-1.1-246	60°
30	I	336°-0.3-066	336°-0.7-246	60°
31	С	336°-0.3-066	336°-0.3-246	60°
32	RO	336°-0.3-066	246°-1.1-246	60°

.
<u>PATTERN #12</u> - See Figure B-7. Two aircraft will be required for the climb-dive tests. Normal operating area will utilize the basic figure eight pattern using the Millville VORTAC radials 040° , 055° - 220° - 235° with legs $^{\pm}$ 10 NM in length. Altitude will vary $^{\pm}2000$ feet of an optional basic altitude. Maneuvering aircraft, Aircraft #1 and/or Aircraft #2, when changing altitude will establish a change rate of 2000 feet per minute with lateral separation of one-half NM or less during vertical cross-overs. The two basic patterns will be head-on and same direction parallel flights. In each type, runs will be made with one aircraft level while the other is climbing and diving and with both aircraft climbing and diving simultaneously in opposite vertical directions.

Type of encounters within figure eight:

- A. PARALLEL. A/C #1 remains level at 8000'. A/C #2 initially at 10,000'. Will descend to 6000' NE BOUND. Will climb from 6000' to 10,000' SW BOUND. (approximately 2 to 4 runs).
- B. PARALLEL. A/C #1 climbs from 6000' to 10,000' SW BOUND, A/C #2 descends from 10,000' to 6000' SW BOUND. NE BOUND A/C reverse. A/C #1 descends from 10,000' to 6000' and A/C #2 climbs from 6000' to 10,000' (approximately 2-4 runs).
- C. HEAD-ON. A/C #1 remains level at 8000: A/C #2 will descend from 10,000' to 6000' NE BOUND, and climb from 6000' to 10,000 SW BOUND. A/C will utilize opposite radials toward each other (approximately 2-4 runs).
- D. HEAD-ON. Both A/C will climb and descend between 10,000' and 6000'. When A/C #1 is descending, A/C #2 will be climbing & vice versa. (Approximately 4 to 6 runs).
- NOTE: Actual leg lengths will probably be within ⁺ 10nm of the station, to allow aircraft to position themselves for Xovers at the station at 2000 FPM rate of climb or descent.

PATTERN #12 FIGURE B-7.

<u>PATTERN #13</u> - This pattern requires three (3) aircraft with all available NAFEC tracking facilities. The basic fix to be used is the Atlantic City VORTAC. Due to known tracking acquisition problems, the pattern shall be flown below 5000 feet within a 20 NM radius of the Atlantic City VORTAC. There are four basic patterns, head-on, head-on/90°, tail chase and holding. A basic figure eight is utilized for the first three types. In each type of pattern, three airspeeds are used, 150K, 230K and 300K, with vertical separation between aircraft varying between 1000' and 400'. Radius action of each aircraft will vary according to speed with the cross-over point over the vortac. (Figure 8 and 9).

Four (4) basic patterns:

- A. Head-On
- B. Head-On/90°
- C. Tail Chase
- D. Holding

Airspeed/Radius (Add turning radius)

150K/10nm

230K/15.3nm

300K/20nm

Altitudes

For each basic pattern, A thru D, there will be four (4) encounters at various altitudes.

4	<u>\/C #1</u>	<u>A/C #2</u>	A/C #3
1.	3000'	4000'	5000'
2.	3000'	4000'	4400'
3.	3600'	4000'	5000'
4.	3600'	4000'	4400 '

FIGURE B-8. PATTERN #13 (HEAD-ON, HEAD-ON/90°)

•

TAIL CHASE

FIGURE B-9. PATTERN #13 (TAIL CHASE, HOLDING)

1.	Heading	004°	30nm	S	to	30nm	N	of	PHL	
2.	Heading	184°	30nm	N	to	30nm	S	of	PHL	
3.	Heading	184°	30nm	N	to	30nm	S	of	TVS	
4.	Heading	004°	30nm	S	to	30nm	N	of	TVS	
5.	Heading	184°	30nm	N	to	30nm	S	of	ACY	
6.	Heading	004°	30nm	S	to	30nm	N	of	ACY	
7.	Heading	227°	30nm	NI	E to	5 30ni	n l	SW (of MIV	(V467)
8.	Heading	046°	30nm	SI	N to	5 30ni	m 1	NE	of MIV	(467)
9.	Heading	080°	-090°	f	rom	OOD ·	to	5 0 1	nm East	t
10.	Heading	260°	-270°	f	rom	50nm	E	ast	to 001	D
11.	Heading	184°	30nm	N	to	30nm	S	of	NPT	
12.	Heading	004°	30nm	s	to	30 n m	N	of	NPT	

When coordination is initiated for these tests, PATTERN #14 will be referred to, with the flight path desired given by numerical sequence of events required for data acquisition. Altitude desired and any deviation from those shown will be coordinated and clarified during the original request call.

EXAMPLE: Previous flights have been conducted IFR at 4000' and 5000' as follows: 13-1-2-13-5-6-7-8-13, or ACY 13 to 1 30 S of PHL to 30 N of PHL, 2 30 N of PHL to 30 S of PHL, 13 to ACY, 5 to 20 N of ACY to 20 S of ACY, 6 20 S of ACY to 20 N of ACY, 7 30 NE MIV to 20 SW MIV, 8 20 SW MIV to 30 NE of MIV, 13 to ACY-terminate. NOTE: 5-6-7-8 deviated from the 30nm to the 20nm points. This in some instances will produce the required results, and would be noted during the initial coordination call.

One proposed plan, when Trevose is modified, will be as follows: 13-1-31-3-5-6-7-8-13. The flight path is on Figure B-10. The flight plan request would be as follows: ACY 13 to 1, 30nm S of PHL to 30nm N of PHL, to 3 30 N of TVS to 30 S of TSV, to 1 AIRCRAFT: Initial Start Point = IP

ALTITUDE	AIRSPEED				
High = H	Fast = F				
Center = C	Medium = M				
Low = L	Slow = S				

PATTERN #14. North Pulse Kit Installation & Interface Tests. Kits are or will be installed on radars at Philadelphia, Trevose, Atlantic City and Newport (mobile). ACY is shown on Figure B-10 at 0 mileage point of North/ South radials, 004° & 184°.

Patterns usually consist of \pm 30nm of site, on a magnetic track of 004° & 184° (North pulse beam width is 8° wide, from 0° cw to 008°).

When all four kits are installed, patterns are desired N&S each site, plus 30NM NE and 30NM SW of MIV on V467. In addition, a radial off of OOD may be required, either the 080° R or 090° R to a point 50nm East.

The OOD and MIV radials are required to bisect the radar positions at various angles to acquire the requested test data.

Explanantion of numbers on Figure B-10

NUMBER

- 13. Atlantic City ACY
- 14. Newport NPT
- 15. Philadelphia PHL
- 16. Trevose TVS
- 17. Millville MIV
- 18. Woodstown OOD

FIGURE B-10. PATTERN #14

30 S of PHL to 30 N of PHL, to 3 30nm N of TVS to 30nm S of TVS, to 5 30nm N of ACY to 30nm S of ACY, to 6 30 S of ACY to 30nm N of ACY, to 7 30nm NE MIV to 30 SW MIV, to 8 30nm SW MIV to 30nm NE MIV, to 13 ACY, land.

Runs 11 & 12 could be added into the sequence, if mobile unit is in position and modified. ($30nm \stackrel{+}{-} 14$ Newport).

PATTERN #15. 2 A/C Formation, Round-Robin. Altitude 24,000 Feet Speed 250 KWTS. A/C #2 one (1) mile to the right and one (1) mile behind A/C #1. Depart ACY to DCA, BOS via PHL & JFK, return to ACY. Sample Flight Plan: ACY V184 MIV, V16 ENO, J37

OTT, RV EMI, J6 RBV, J80 JFK, J48/J77 BOS, J55 SIE, RV ACY. (Figure B-11). B-27/B-28

APPENDIX C

THREAT LOGIC *

1. INTRODUCTION

This section describes the threat declaration and evasion logic implemented in the experimental BCAS system. One of the groundrules for the development of this test system was that the threat logic used must approximate as closely as possible ANTC-117, the threat logic developed for range/range rate CAS systems. The threat declaration and evasion logic described attempts to do just that, and therefore retains some of the limitations of ANTC-117.

2. DATA AVAILABLE TO THREAT LOGIC

The data available to the threat logic with respect to each Global Track includes the following items:

- TOA History The last three TOA values measured with respect to the interrogations from each radar included in the Global Track and the time of each measurement.
- 2. DAZ History The last three Differential Azimuth values measured with respect to each radar included in the Global Track and the time of each.
- 3. Active Range History The last three range measurements obtained by active interrogations (if any) by own aircraft and the time of each.
- 4. Altitude The current extrapolated altitude (and altitude rate) of the track.
- 5. Identity The Mode-A code associated with the Global Track.
- 3. CLASSIFICATION OF INTRUDERS
- 3.1 RANGE, TOA AND DAZ CLASSIFICATION

ANTC-117 used three criteria to evaluate the measured range and range-rate data and to classify the intruder into "Tau" catagories. These are:

^{*}B. Hulland, Litchford Electronics.

- 1. If the measured range is less than 0.5 nmi., a "Tau 1" condition is declared.
- If -(range 0.25 nmi.)/(range-rate) is less than 25 seconds, a "Tau 1" condition is declared.
- If -(range 1.8 nmi.)/(range-rate) is less than 40 seconds, a "Tau 2" condition is declared.
- 4. If none of the above is true, no "Tau" condition is declared and the intruder is not further processed.

A similar classification is done by the experimental BCAS system. However, three "Tau" catagories are defined, and the logic to classify a track is more complex. In this classification the active range measurements (if any) are processed exactly like TOA measurements from an additional radar. Since the various measurements are made at different times, they are extrapolated linearly to the current time using the last two measured values in each case. The criteria used for each intruder are:

- 1. If all the TOA values are less than 6.1 μs (microseconds), a "Tau O" condition is declared.
- For each radar, two values are computed (only the first for active interrogations):
 - 1) -(TOA-3.0 us) (Dif Time)/(Dif TOA)
 - 2) (DAZ) (Dif Time)/(Dif DAZ-[0.7 deg][Sign of DAZ])

where "Dif" means the change in the specified value between the last two measurements (i.e., Dif Time is the time between measurements). If all of these values are less that 25 seconds, a "Tau 1" condition is declared.

3. For each radar, the following value is computed: -(TOA-22.0 us)(Dif Time)/(Dif TOA)

If all of these values are less than 40 seconds, a "Tau 2" condition is declared.

4. If none of the above is true, no "Tau" condition is declared and the intruder is not further processed except in deciding whether to interrogate actively. It should be noted that in all subsequent processing, a "Tau O" condition is treated exactly the same as a "Tau 1" condition; the distinction is made here only for convenience in programming.

If an intruder is being tracked only via active interrogations, this classification is exactly equivalent to that of ANTC-117 except that the range rate is obtained by subtraction of successive range measurements rather than from a Doppler measurement.

3.2 ALTITUDE CLASSIFICATION

ANTC-117 further classifies intruders in terms of their altitude relative to own altitude, and in terms of own altitude and altitude rate. The experimental BCAS system classifies them in exactly the same way as ANTC-117 in this respect. (This means that it ignores the intruder's altitude rate, even though that data is readily available in the experimental BCAS.) This classification is as follows:

- 1. If the difference between the intruder's altitude and own altitude is greater than 3300 ft., the intruder is not further considered by the threat logic.
- If the difference between the intruder's altitude and own altitude is less than 900 ft. (700 ft. if own altitude is less than 10,000 ft.), the intruder is classified as "Coaltitude".
- 3. If adding the change in own altitude in the last 30 seconds (or less) to current own altitude would make the intruder "Coaltitude", the intruder is classified as "Predicted Coaltitude".
- 4. If the intruder is not "Coaltitude", it is classified in terms of the difference between its altitude and own altitude as: "<1400 ft" if the difference is less than 1400 ft., "<1900 ft" if it is less than 1900 ft. or "<3400 ft" otherwise.</p>

4. TIE BREAKING

The one other piece of information needed by the evasion logic is whether the intruder is "Above" or "Below" own. In most cases this presents no problem. However, if an intruder classified as Tau 0, 1 or 2 is reporting its altitude exactly equal to own altitude, a decision must be made whether to consider it as above or below; and if that intruder is also equipped with a BCAS, the decision must be coordinated with it so that both aircraft will not climb (or both dive). This process is known as tiebreaking.

To make possible the required coordination, the experimental BCAS adds pulses to its own Mode-C replies to all interrogations whenever it detects one or more Tau 0, 1 or 2 intruders within 3300 ft. or its own altitude. It does this as follows:

- If the two most threatening intruders are actually (or are considered to be due to tie-breaking) ABOVE own or if the BCAS is giving a DIVE command, the "X Pulse" will be transmitted.
- 2. If the two most threatening intruders are actually (or are considered to be due to tie-breaking) BELOW own or if the BCAS is giving a CLIMB command, the "X Pulse" and the "D1 Pulse" will be transmitted.
- 3. If neither of the above is true, the "Dl Pulse" only will be transmitted as an indication that the BCAS has detected a potential threat, but has not yet decided on a maneuver direction.

These three conditions will be referred to as transmitting DOWN, UP and WARN respectively.

The tie-breaker logic used in the flight test system is the following:

 If the intruder at own altitude is not transmitting UP or DOWN and own is currently transmitting UP, consider the intruder as BELOW own.

- 2. If the intruder at own altitude is not transmitting UP or DOWN and own is currently transmitting DOWN, consider the intruder as ABOVE own.
- 3. If the intruder at own altitude is transmitting UP and own is not currently transmitting UP, consider the intruder as ABOVE own.
- 4. If the intruder at own altitude is transmitting DOWN and own is not currently transmitting DOWN, consider the intruder as BELOW own.
- 5. If the Identity of the intruder at own altitude (Mode-A code) is numerically less than own's Identity, consider the intruder as BELOW own.
- 6. If the Identity of the intruder at own altitude (Mode-A code) is numerically greater than own's Identity, consider the intruder as ABOVE own.
- 7. If none of the above rules yield a decision, make a 50-50 random choice whether to consider the intruder at own altitude as ABOVE or BELOW. The present program makes that choice by computing the parity of the word "ZMSHT" which is incremented every 9.5 ms.

Note that no provision is made in this program to handle the case where more than one intruder is at own altitude. In this case, all but one (generally the most threatening one) of the intruders at own altitude are treated as though they were ABOVE own, and the one is treated as described above.

5. EVASION LOGIC

The experimental BCAS, like ANTC-117, provided a matrix of responses to all possible combinations of threats from one or two intruders. The matrix used by this program is essentially identical to ANTC-117. In case there are more than two intruders, the two most threatening are selected, and all others are ignored. The following pages are a listing of the response matrix. NOTE: "LVS" stands for "Limit Vertical Speed to the values below". "N/A means an impossible condition. (See Figures C-1, 2, and 3).

6. INTERROGATION CONTROL

The final function performed by the threat logic in the experimental BCAS is to control whether or not active interrogations are transmitted. The only portion of this function that need be commented on here is the "Interrogate on Threat" decision. When this mode is selected and interrogations are not required by the lack of sufficient radars, all intruders within 3300 ft. of own altitude are examined to see if they will be either Tau 0, Tau 1 or Tau 2 (ignoring any data from active interrogation) within the next 10 seconds. If so, active interrogation is selected. (The exclusion of data resulting from active interrogations is to prevent an unstable condition that would occur if an intruder was classified as Tau 2 with the interrogator off, but no threat with the interrogator on.)

	1	2001Pm UP						
None	Dive Do No! Turo	Bo Not Turn LVS	Level Off Do Not Turn LVS 500ften M2	LVS 5000000-00	Level Off Do But Turn DV1 D00(Eec.D	1000fpm Up	Level II No NGE Turn 2000fpm Up	LVS 2000 (PM Uf
Coaltitude Tau 0 or 1	Dive Do Not Turo LVS 20012m UF	Dive Do Not Turn LVS 200fem Ur	Level Off Do Not Turn LVS 500fpm Up	Dive Do Not Turco LUS 2061cm Us	Level Off No Not Turn LVS GOOTEM DE	Bive Bulkel Turn Chr Rodfam Us	Level Of: No Mot Turn LVS 500120 0	Do Not Turn Do Not Turn LUS 200fpm Up
Coaltitude Tau 2	Dive Do Not Turn LVS 2001.m. UP	Do Not Toro LVS 200frm Up	Level Off Do Not Turn LVS 200fem Up	Do Not lunn EVS 2001⊱m ik	ievel Off No Not Turn LVS 200fem Uk	Do Not Turn LVS 200fem Us	Level Dff Do Not Furn LV5 200frm Ur	Po Not Tyrn LVS 200fpa Up
Predicted Coaltitude <1400 ft	Level Off Do Nut Turn LVS	Level Off Do Not Turn LVS 200fpm UP	Level Off Do Not Turn LVS 500fpm Up	Level Ofi Do Not Turn LVS S00fpm Up	Level Off Do Not Turn LVS 500fem Up	Level Off Do Not Turn LVS 500fem Up	Level Ört Do Nul Turn LVS 500fpm Us	Level Off Do Not Turn LV9 500fem Up
(1400 ft Tau 07 1 or 2	Dive Do Not Turn LVS 200fem Ne	Do Nat Furn LVS 200fem Ve	Level Off Do Not Turn LVS 500frm Ur	LVS 500քթա Սթ	N/A	LVS 500fem Ve	N/A	LVS SOOfem De
Predicted Coaltitude <1900 ft Tau O, 1 or 2	Level Off Do Not Turn LVS 500fem Ur	Level Off Do Not Turn LVS 200fpm Up	Level Off Do Not Turn LVS 500îpm Up	N/A	Level Off to Not Turn LVS 1000fem Ur	Level Off Do Not Turn LVS 1000fpm Up	Level Off Bo Not Turn LVS 1000fem Un	Lovel off Do is to Diro LV5 Dooltem Us
(1900 ft Tau 0, 1 or 2	Dive Do Not Tarn LVS 200fpm Up	Do Not Turn LVS 200fem Ve	Level Off Do Not Turn LVS 500fem Up	LVS 500fem Ue	Level Off Do Not Turn LVS 1000fpm Up	LVS 1000fpm Up	N/A	a 005 – generatione Unit
Predicted Coaltitude (3400 ft Tou O. 1 or 2	Level Off No Not Turn LVS 500fpm Up	Level Off Do Not Turn LVS 200fem Up	Level Off Do Not Turn LVS 500fpm Up	МЛА	: 2021 Off Do Not Turs LVS 1000fpm Up	NZA	Level Orr Do Hot Turn LVS 2000fem (D-	Level Off Do Not Turn LUS 2000fpm Up
ntruder 2 3400 ft 180 0- 1 or 2	furre fin Mot, Furn (195 - 2003)a De	Do Not fern LVS 200f⊱m G≂	tevel Off Da Not Turn LVS 500(xm Up	LVS 500Րթու ։Կշ) wyel Off (m Not Turn 109 1000fam Ua	LVS Totoften Us	Level o rf Bo dal turn LUS 2000faa de	LVS 2000feiii Up

FIGURE C-1. THREAT LOGIC - ALL INTRUDERS ABOVE

C-7

APPENDIX D RANGE-BEARING COMPUTATIONS

D.1 INTRODUCTION

The range and bearing to a threat aircraft are not currently computed by the BCAS system in flight. Instead sufficient data are recorded to allow after-the-fact computation, based on the measurements made in flight.

A routine to carry out the range and bearing calculations had been developed in the course of work preceding the current contract, and had been used to track aircraft observed by the demonstration BCAS system placed on ten of the Pan Am buildings. In the configuration of radars and aircraft encountered there, it had operated satisfactorily. The routine was made available by Megadata.

At TSC a simulation program was written to test the accuracy of the solutions and the degree to which they were affected by errors in the measurements on which the calculations were based.

Test runs showed that the PASIVE subroutine contained errors. In trying to find the causes of these errors, the documentation supplied with PASIVE was not helpful. Much of it was unrelated to the actual program, and the algorithms described themselves were incorrect.

Two things were clear fairly early:

- 1. that the problem was rather complicated, due largely to numerical instability in directions near the radars
- that, when PASIVE was written, the difficulties were not recognized.

PASIVE consisted of three parts:

- 1. a selection of two radars to use for initialization
- 2. initialization
- 3. iteration using a hill-climbing technique.

there will be garble in this configuration. Here the best choice of radar pairs is probably G_1 , G_3 . What follows is a discussion of the remaining parts of NUPAS, which may be considered to be in final form except for program implementation details, a comparison with the original Megadata-supplied range-bearing calculations program PASIVE; and a discussion of the problems inherent in the task.

D.2 SIMULATED INPUTS

NUPAS has been tested with simulated inputs. This means that some configuration of radars and aircraft is assumed and the azimuth, differential azimuth, and TOA measurements that the BCASequipped aircraft would make are calculated. Some known "error" can then be added to the computed values to simulate measurement noise. The simulated measurements are used as inputs to NUPAS, and the range and bearing to the threat aircraft from the BCAS aircraft, as well as the ranges to the ground radars, are calculated. The calculated results are compared and with the configuration initially assumed to determine the error in the NUPAS results.

With error-free measurements NUPAS produces essentially perfect results (errors in range to the threat of less than a foot and bearing errors of less than 0.1°) in most configurations. NUPAS tends to fail (i.e., calculates positions for the threat some 1000' from the "true position", 3 nautical miles from own) when the threat aircraft is between the BCAS aircraft and one of the locked radars, or in a sector within about 20° of the radar, viewed from own. The reason why this occurs is described below.

With error-corrupted measurements NUPAS still produces good results. The precise magnitude of the error in the computed position due to error in the input quantities is a function of the geometry in each case. NUPAS has been exercised using three simulated radars about the BCAS position, always selecting two for calculations. Simulated errors of $\pm .27\mu$ sec for TOA, \pm 75 ft for altitude of own and others, and \pm .15° for azimuth and differential azimuth were introduced in various combinations.

D-4

In the simulations, these errors were introduced as fixed quantities added to the values that the "measurements" should have in the assumed geometry. The magnitude of the "errors" corresponds roughly to the RMS errors (i.e., the σ) of the measurements made by the BCAS system.

No combination of these errors resulted in computed bearing errors of more than two degrees in any geometry tested. The range error was significantly affected only by errors in the TOA measurements. The other errors resulted in computed range errors of some tens of feet. The TOA errors results in range errors of generally less than 200 feet. A small set of geometric configurations resulted in range errors of about 500 feet. It is believed that these errors can be attributed to a bad selection of radars.

All calculations were completed in two or three iterations.

D.3 FLIGHT TEST DATA INPUTS

A set of programs have been written to extract target reports from the BCAS magnetic tapes and construct disk files, sorted by intruder transponder codes. These files serve as inputs to a program using NUPAS to construct intruder trajectories, i.e., plots of range and bearing to the target as a function of time. These plots, given ARTS separation data for comparison, are presented elsewhere in this report.

I. The Nature of the Problem and an Overview of the Solutions

Let $n \ge 2$.

Given n radars G_1, \dots, G_n (assumed to be at sea level) let (for $1 \le i \le n$)

 β_i = the bearing of G_i from own

- α_i = the differential azimuth, with respect to G_i , from own to other
- T_i = the time of arrival (or delayed time of arrival or TOA) with respect to G_i .

Furthermore let

r = the horizontal distance from own to other

 θ = the bearing of other with respect to own

H = the altitude of other

 H_0 = the altitude of own.

Given β_i , α_i , T_i , H and H_o, the problem is to compute r and θ .

It is not difficult to find a function F such that, for each i, $T_i = F(r, \theta, \alpha_i, \beta, H_o)$. Thus the problem reduces to solving this system of n equations for the two unknowns r and θ .

Unfortunately the function F is complicated; so if the system has a closed form solution, it is not easy to find. It seems, then, to be necessary to resort to numerical methods.

The notation and choice of variables used here is different from that of PASIVE because PASIVE uses rectangular coordinates. PASIVE's notation will be translated to cylindrical coordinates here in order to simplify this exposition:

a) The Method of PASIVE

First a function f is defined such that, for small values of α_i and values of H and H_o that are not too large, $f(r,\theta,\beta_i,H,H_o)$ is a decent approximation to $F(r,\theta,\alpha_i,\beta_i,H,H_o)$. In physical terms, $f(r,\theta,\beta_i,H,H_o)$ is the expression for the TOA in a geometric situation in which the radar is at an infinite distance. Then the locus of intruder position leading to a constant observed TOA is a paraboloid of revolution, not an ellipsoid of revolution. Then two radars G_{μ} and G_{ν} are chosen and the system of equations

$$T_{\mu} = f(r, \theta, \beta_{\mu}, H, H_{o})$$
$$T_{v} = f(r, \theta, \beta_{v}, H, H_{o})$$

is solved, in closed form, for $r = r_0$, $\theta = \theta_0$.

Let
$$G(r,\theta) = \sum_{i=1}^{n} (F(r,\theta,\alpha_i,\beta_i,H,H_0) - T_i)^2$$
. If $(\overline{r},\overline{\theta})$ solves

the system

$$F(r,\theta,\alpha_i,\beta_i,H,H_o) = T_i$$
 $1 \le i \le n$

then $G(\overline{r},\overline{\theta}) = 0$. This suggests that the system may be solved by minimizing G.

Let $\theta(x,y)$ be such that $\sqrt{x^2+y^2} \cos \theta(x,y) = x$ and $\sqrt{x^2+y^2} \sin \frac{\theta(x)}{x^2+y^2} = y(\theta(x,y) \text{ is well-defined modulo } 2\pi)$ and define $u(x,y) = C(\sqrt{x^2+y^2}, \theta(x,y))$. u is just the rectangular coordinate version of G.

If u achieves a minimum at $(\overline{x},\overline{y})$ then $\frac{\partial u}{\partial x}(\overline{x},\overline{y}) = \frac{\partial u}{\partial y}(\overline{x},\overline{y}) = 0$.

Let
$$v(x,y) = \left(\frac{\partial u}{\partial x}(x,y)\right)^2 + \left(\frac{\partial u}{\partial y}(x,y)\right)^2$$
.

PASIVE proceeds to compute $(\overline{x}, \overline{y})$ by solving v(x, y) = 0.

Let $\forall v(x,y)$ denote the gradient of v at (x,y). Suppose that, after the $i\frac{th}{i}$ iteration, the approximate solution to v(x,y) = 0 is (x_i,y_i) . PASIVE computes a vector \vec{w}_i that is presumably an approximation to the appropriate Newton-Raphson multiple of $\forall v(x_i,y_i)$ and obtains $(x_{i+1},y_{i+1}) = (x_i,y_i) + \vec{w}_i$. The iterations continue until either i = 20 or \vec{w}_i is sufficiently small.

b) The Method of NUPAS

As in PASIVE, two radars G_μ and G_ν are selected (but differently) for initialization. Assume, for simplicity, that μ = 1 and ν = 2.

The NUPAS initialization occurs in two stages. i) The same function f chosen by PASIVE is used by NUPAS and the resulting system of two equations in two unknowns is solved for $r_0 = \tilde{r}_0, \theta_0 = \tilde{\theta}_0$. ii) The values r_0, θ_0 are used to estimate $F(r, \theta, \alpha_i, \beta_i, H, H_0) - f(r, \theta, \beta_i, H, H_0)$ for i = 1, 2. This 'error' is then absorbed by the given parameters T_i which leads to a system of equations

$$\tilde{T}_{i} = f(r,\theta,\beta_{i},H,H_{o})$$
 $i = 1,2$

which is then solved for $r = r_0$, $\theta = \theta_0$. The iteration will begin here.

In the iteration, NUPAS uses only the two radars G_1 and G_2 in order to avoid certain complications.

Let $M(r, \theta)$ denote the 2 x 2 matrix

$$\begin{pmatrix} \frac{\partial F}{\partial r} (r, \theta, \alpha_1, \beta_1, H, H_0) & \frac{\partial F}{\partial \theta} (r, \theta, \alpha_1, \beta_1, H, H_0) \\\\ \frac{\partial F}{\partial r} (r, \theta, \alpha_2, \beta_2, H, H_0) & \frac{\partial F}{\partial \theta} (r, \theta, \alpha_2, \beta_2, H, H_0) \end{pmatrix}$$

If, after the $i\frac{th}{t}$ iterative step, the approximate solution is (r_i, θ_i) , (r_{i+1}, θ_{i+1}) is defined by the matrix equation

$$\begin{pmatrix} \mathbf{r}_{i+1} \\ \theta_{i+1} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{i} \\ \theta_{i} \end{pmatrix} + M(\mathbf{r},\theta)^{-1} \begin{pmatrix} \mathbf{T}_{1} - F(\mathbf{r}_{i},\theta_{i},\alpha_{1},\beta_{1},\mathbf{H},\mathbf{H}_{o}) \\ \mathbf{T}_{2} - F(\mathbf{r}_{i},\theta_{i},\alpha_{2},\beta_{2},\mathbf{H},\mathbf{H}_{o}) \end{pmatrix}$$

Originally, the iteration was stopped if

- i) i = 20
- ii) $r_{i+1} r_i$ and $\theta_{i+1} \theta_i$ were both sufficiently small or
- iii) $(F(r_{i+1}, \theta_{i+1}, \alpha_1, \beta_1, H, H_o), F(r_{i+1}, \theta_{i+1}, \alpha_2, \beta_2, H, H_o))$ was further from (T_1, T_2) than $(F(r_i, \theta_i, \alpha_1, \beta_1, H, H_o), F(r_i, \theta_i, \alpha_2, \beta_2, H, H_o))$ is.

The new criterion is based on the following observations: The iteration is along a vector field.

If (r,θ) is the solution to the system of equations then (r, θ) is, of course, a sink of this field, but it is not the only sink. In particular (-r, θ), (which is geometrically meaningless) and (r, π + θ) are both sinks. If either of these two additional sinks is chosen by the iteration, the computed position of other will be the reflection about own of the true position.

Fortunately it is not difficult to tell, from the input data, if this reflection has been computed. Then the program can correct the 'mistake' of iterating the wrong sink. This eliminates one of the reasons for checking the results after each iterative step and then deciding whether or not to continue. The new algorithm stops iterating when either 20 iterations have been made or when the previous iteration effected a very small correction. The change has resulted in fewer but wilder wild points.

II. The Need for Changing PASIVE and the Limitations of NUPAS

a. Radar Selection

PASIVE selects, for its initialization procedure, the radar with the largest TOA and the radar with the smallest TOA. Presumably the reason it does this is to get radars whose difference in bearing from own is large enough. The problem is that the most significant factor for inducing initialization error is the smallness of the smaller TOA. Thus, in an environment where there are many radars to choose amongst, PASIVE's selection almost maximizes the initialization error. (The reason for this will be discussed in b).) The problem becomes even more serious when garble is considered.

An algorithm that avoids this problem has been developed and incorporated in NUPAS. As discussed above, this algorithm too must be considered preliminary in that it does not consider all aspects of the BCAS system.

b. Initialization

Let $R(r,\theta,\alpha,\beta) = \frac{r}{\sin\alpha} \sin(\alpha+\beta-\theta)$ and, for i = 1,2, let $\overline{R}_i = R(r,\theta,\alpha_i,\beta_i)$. The law of sines shows that \overline{R}_i is the horizon-tal distance from own to the radar G_i .

The law of cosines and some algebraic manipulation show that

$$T_{i} = \sqrt{\frac{r^{2} - 2rR_{i} \cos(\theta - \beta_{i}) + H^{2} - H_{o}^{2}}{\sqrt{R_{i}^{2} + r^{2} - 2R_{i} r \cos(\theta - \beta_{i}) + H^{2}} + \sqrt{R_{i}^{2} + H_{o}^{2}}} + \sqrt{r^{2} + (H - H_{o})^{2}}}$$

D-9

Then

$$F(r,\theta,\alpha_{i},\beta_{i},H,H_{o}) = \frac{r^{2} - 2rR_{i}(r,\theta,\alpha_{i},\beta_{i})\cos(\theta-\beta_{i}) + H^{2} - H_{o}^{2}}{\sqrt{R_{i}(r,\theta,\alpha_{i},\beta_{i})^{2} + r^{2} - 2R_{i}(r,\theta,\alpha_{i},\beta_{i})r\cos(\theta-\beta_{i}) + H^{2}} + \sqrt{R_{i}(r,\theta,\alpha_{i},\beta_{i})^{2} + H_{o}^{2}}$$

$$+ \sqrt{r^{2} + (H-H_{o})^{2}}$$

If it is assumed that $\overline{R}_i >> r, H, H_0$ then the denominator of the first term of F is close to $2\overline{R}_i$ and the definition $f(r, \theta, \beta, H, H_0) = -r \cos(\theta - \beta) + \sqrt{r^2 + (H - H_0)^2}$ (recall $f(r, \theta, \beta_i, H, H_0)$ is supposed to be an approximation to $F(r, \theta, \alpha_i, \beta_i, H, H_0)$) becomes obvious. Note that this approximation becomes weaker as the ratio $\frac{r^2 + H^2 - H_0^2}{2R_i}$ becomes larger.

Let A = 1 -
$$\cos(\beta_2 - \beta_1)$$

V = $\frac{1}{A^2} \left((T_1 + T_2)^2 + (4 - 2A)T_1T_2 - 2A(H - H_0)^2 \right)$ and
W = $\frac{2(T_1 + T_2)}{A^2} \sqrt{(4 - 2A)T_1T_2 + (A^2 - 2A)(H - H_0)^2}$.

The system of simultaneous equations

 $T_i = f(r, \theta, \beta_i, H, H_o)$ i = 1, 2

has two solutions, (r, θ). The two values of r are given by $\sqrt{V+W}$

PASIVE made an algebraic mistake which NUPAS corrects.

To arrive at r it is now necessary to choose between $\sqrt{V+W}$ and $\sqrt{V-W}$. PASIVE produced wild points in good geometric configurations because it did not always make this choice correctly. NUPAS has a different algorithm for making the choice.

Once r is known it is not difficult to solve for θ .

D-10

It was mentioned earlier that the approximation $F(r,\theta,\alpha_i,\beta_i,H,H_o) \approx f(r,\theta,\beta_i,H,H_o)$ becomes weaker as

$$\frac{r^2 + H^2 - H_0^2}{2\overline{R}_i}$$

becomes larger. This observation is important because

- 1. if H and H_o are large, $H^2-H_0^2$ can be significant even if H-H_o is small.
- for reasons that will be gone into shortly and in c) it is important to have a good initialization if one of the TOAs is small.

NUPAS uses the (r,θ) computed above to compute numbers \tilde{T}_i in such a way that the correct solution of the system $\tilde{T}_i = f(r,\theta,\beta_i, H,H_0)$ will be a better initialization than the one previously computed.

The following is one reason why special care is needed when θ is close to one of the β_i 's, i.e., when the intruder is approximately in the direction of one of the radars when viewed from the BCAS aircraft.

It is true that the approximations $F(r,\theta,\alpha_i,\beta_i,H,H_o) \approx f(r,\theta,\beta_i,H,H_o)$ are fairly good. However it does not necessarily follow from this that the solution of $T_i = F(r,\theta,\alpha_i,\beta_i,H,H_o)$ i=i,2 is necessarily close to a solution of $T_i = f(r,\theta,\beta_i,H,H_o)$ i=i,2. It would follow if the determinant of the derivative matrix

$\frac{\partial f}{\partial r}$ (r, θ , β_1 , H , H_0)	$\frac{\partial f}{\partial \theta}$ (r, θ , β_1 , H, H ₀)
$\frac{\partial f}{\partial r}$ (r, θ , β_2 , H, H _o)	$\frac{\partial f}{\partial \theta}$ (r, θ , β_2 , H, H _o)

were not too small.

But this determinant will be 0 when

$$\sqrt{r^{2} + (H, H_{0})^{2}} \cos\left(\frac{\beta_{2} - \beta_{1}}{2}\right) = r \cos\left(\theta - \frac{\beta_{1} + \beta_{2}}{2}\right).$$

If H = H₀ this occurs when $\theta = \beta_1$ and when $\theta = \beta_2$.

This is one of the reasons that NUPAS (and PASIVE) had difficulties when the bearing of other is close to the bearing of one of the radars. Note also that, when $|H-H_0|$ becomes larger, the center of the numerically unstable ranges moves a bit from the directions of the radars.

- c. Iteration:
 - i) <u>PASIVE</u>

See I,a) for notation.

It was mentioned there that PASIVE does not iterate along ∇v but rather (at the mth iterative step) along a vector \vec{w}_m .

Suppose that, at the $m \frac{th}{t}$ iterative step, (r_m, θ_m) is the approximation to the solution. For $1 \le i \le n$,

 $S_{i}^{m} = \frac{r_{m}}{\sin \alpha_{i}} \sin (\alpha_{i} + \beta_{i} - \theta_{m})$

is an approximation to \overline{R}_i , the horizontal distance to the $i^{\underline{th}}$ radar.

PASIVE obtains the vector \vec{w}_i by computing ∇v under the assumption that S^m_i is constant in r and θ and then updating S^m_i to S^{m+1}_i after the iteration, provided $|\alpha_i| \ge .05$.

There are two problems here:

- 1. the assumption introduces non-trivial error.
- 2. if \overline{R}_i is large compared to r, then α_i , will be small for a sizable range of values of θ so there will be no updating of S_i^m .

The combination of these two problems produces significant error even in good geometric configurations. Suppose there are two radars G_1 and G_2 . For i=1,2, let \vec{R}_i be the horizontal projection of the vector from own to G_i . Let \vec{S} be the horizontal projection of the vector from own to other. The error is especially significant (as shown by test runs) when \vec{S} is a convex linear combination of \vec{R}_1 and \vec{R}_2 , i.e., when the projection of other is in the

D-12

smaller wedge determined by own and the two radars.

There is yet another problem which is very serious in an environment where there are only two radars (so it may not be possible to choose a good geometric configuration).

When the distances from own to the radars are known or approximated and the heights of the aircraft are known, then knowledge of each TOA restricts the position of other to a horizontal ellipse whose major axis is in the vertical plane of the line segment joining own to the radar.

Consider the following sketches:

In figures a) and c), P_1 and P_2 represent the two possible positions of other. In figure b) other has a TOA of 0 with respect to G_1 . In c) this TOA is small.

In case c) (or, for the matter a)) after successive iteration the approximating solutions will become close to either P_1 or P_2 . If the discrete nature of the iteration is ignored, the initialization will probably move to either P_1 or P_2 the two sinks of the flow (or peaks of hills or bottoms of valleys or ω -points of the differential equation, all of which mean the same thing) with the choice depending on whether the initialization is in the sphere of influence (stable manifold) of P_1 or P_2 . In the range of small TOA's P_1 and P_2 are not very far apart so a small initialization error can result in the selection of the wrong sink.

D-13

The problem is further complicated by the fact that the iteration is discrete. An overeager iterative step can take a point out of the right sphere of influence and into the wrong one.

The result of all this is that if other is too nearly in line with one of the radars, the initialization error might actually be doubled by the iteration.

As a final randomizer, successive iterations may take the point close to the 'saddle' S, between the two sinks.

The vector is 0 at S and small near S, and the next iteration will stop near the saddle.

This problem makes it very important that the initialization be good, expecially if the bearing of other is close to the bearing of one of the radars. As mentioned earlier, this is precisely the configuration in which the initialization is weakest.

In summary, there is going to be a bad region such that, if other is in that region, the iteration may not improve the initialization. Furthermore this bad region is where the initialization is weakest.

ii) NUPAS

The essence of the method is described in Ib. At the present time there is one known difficulty in the procedure and one possible difficulty.

Let for j = 1,2

APPENDIX E

BCAS FLIGHT TEST TAPE FORMAT

1. PURPOSE

- 1.1 The tape should contain the results of each test.
- 1.2 It should contain enough information to follow the data reduction carried out during the flight.
- 1.3 It should contain the appropriate information to do a three dimensional reconstruction of target position if such information is available.

2. CONSTRAINTS

- 2.1 The data manipulation strictly for tape output must be minimized so as to not create a large overhead.
- 2.2 The data written to tape should be minimized so as to not burden the DMA and not steal too large a fraction of memory cycles.
- 2.3 The data must be heavily blocked on tape to minimize program intervention.

3. GENERAL FORMAT

- 3.1 Each logical record is fixed at eighty characters.
- **3.2** The characters are coded in ASCII.
- 3.3 The tape is IBM compatible 9 track at 800 bpi.

- 3.4 The physical records consist of ten logical records blocked together. There are no extra block control characters. Thus, a physical record is 800 characters in length.
- 3.5 A logical record consists of two 1 character fields followed by thirteen - 6 character fields.
 - 3.5.1 The first two fields are always numeric and serve to identify the record tape.
 - 3.5.2 The remaining fields are usually written in octal format. When a field contains alphabetic information, the previous record always specifies that alphabetic information is coming. Thus, a different format statement may be used.
- 3.6 Record Types

3.6.1	Type 0-1	Header
3.6.2	Туре 0-2	Header (alphabetic info)
3.6.3	Type 1-1	Main Beam Interrupts (unrecognized)
3.6.4	Type 2-1	Recognized and locked radars
3.6.5	Type 2-2	Recognized and locked radars
	(alphabet	ic info)
3.6.6	Type 2-3	Recognized and locked radars
3.6.7	Type 3-1	Raw replies
3.6.8	Туре 3-2	Raw replies (interrogation table)
3.6.9	Туре 3-3	Raw replies (reply data)

- 4.2.3 Fields 3 through 15 = up to 78 alphanumeric characters entered as a title, left adjusted
- 4.3 Type 1-1 Main Beam Interrupts
 - 4.3.1 Fields 1 and 2 = 1 and 1
 - 4.3.2 Present by default, deselectable, occur as record is filled.

 - 4.3.4 Fields 5 through 14 taken in pairs; time of interrupt as in Fields 3 and 4.
 - 4.3.5 Field 15 = six 2-bit fields indicating interrogation mode, written as 4 octal digits right adjusted.
 - 4.3.5.1 The mode of the first interrupt (fields 3 & 4) is indicated in the least significant two bits.
 - 4.3.5.2 Bit coding: 00 = nothing, 01 = Mode A, 10 = Mode C, 11 = other mode.
 - 4.4 Type 2-1 Recognized and Locked Radars
 - 4.4.1 Fields 1 and 2 = 2 and 1 respectively
 - 4.4.2 Always present, occurs once per scan, per radar.

- 4.4.4 Field 5 = Scan #, 6 octal digits, from 16-bit machine.
- 4.4.5 Field 6 = mode interlace pattern; 8 2-bit fields; 6 octal digits.
 - 4.4.5.1 two most significant bits for oldest interrogation.
 4.4.5.2 bit coding: 00 = nothing, 01 = Mode A, 10 = Mode C, 11 = other mode.
- 4.4.6 Fields 7 through 14 = PRP's; LSB = 0.145 µ sec; 6 octal digits from 16-bit machine.
 - 4.4.6.1 Field 7 = PRP1, remaining PRP's in sequence.
- 4.4.7 Field 15 = number of hits in main beam; 5 octal digits right adjusted.
- 4.5 Type 2-2 Recognized and Locked Radars
 - 4.5.1 Fields 1 and 2 = 2 and 2
 - 4.5.2 Always immediately following a type 2-1 record
 - 4.5.3 Fields 3 and 4 = time of indicated interrogation;
 (only if locked) double word internal clock,
 LSB = 0.145 µ sec., 6 + 6 octal digits from
 16-bit machine.
 - 4.5.4 Field 5 = number of PRP which immediately follows above interrogation (only if locked), 2 octal digits right adjusted (first PRP is #1)

- 4.5.5 Fields 6 and 7 = Scan period, double word;
 LSB = 0.145 \mathcal{H} s; 6 + 6 octal digits from
 16-bit machine.
- 4.5.6 Field 8 = internal ID #(plus 1000₈ if locked)
 4 octal digits right adjusted.
- 4.5.7 Field 9 = short main beam count (only if locked)5 octal digits right adjusted.
- 4.5.8 Field 10 = External ID alphabetic (only if locked), up to 6 characters, left adjusted.
- 4.5.9 Field 11 = number of found interrogations/scan (only if locked), 5 octal digits, right adjusted.
- 4.5.10 Field 12 = number of missed interrogations/scan (only if locked), 5 octal digits, right adjusted.
- 4.5.11 Field 13 = number of found interrogations in the widened azimuth window (only if locked) 5 octal digits, right adjusted.
- 4.5.12 Field 14 and 15 = Error sum (only if locked) double word, LSB = 0.145/(2**16),4 sec, 6 + 6 octal digits from a 16-bit machine.

This is the error sum at the time of the indicated interrogation.

- 4.6 Type 2-3 Recognized and Locked Radars
 - 4.6.1 Fields 1 and 2 = 2 and 3 respectively
 4.6.2 Immediately follows a type 2-2 record if the radar is locked.

E - 7

- 4.6.3 Field 3 = quality number, 5 octal digits, right adjusted.
- 4.6.4 Field 4 = own altitude, 2's complement value in units of 100 feet, 6 octal digits from 16-bit machine.
- 4.6.5 Field 5 = azimuth WRT north, in BAM's, 6 octal digits from 16-bit machine.

45 deg = 020000, 90 deg = 040000, 135 deg = 060000, 180 deg = 100000, 225 deg = 120000, 270 deg = 140000, 315 deg = 160000.

- 4.6.6 Field 6 = heading of aircraft, in BAM's, 6
 octal digits from 16-bit machine.
- 4.6.7 Field 7 = Own azimuth update flag in bit 0 + No. of P(N)'s in latest scan.
- 4.7 Type 3-1 Raw Replies
 - 4.7.1 Field 1 and 2 = 3 and 1 respectively.
 - 4.7.2 Normally absent, may be selected; occurs after widened azimuth window of selected radar.
 - 4.7.3 Field 3 = internal ID # of radar, 3 octal
 digits right adjusted.
 - 4.7.4 Field 4 = scan #, 5 octal digits, right adjusted.
 - 4.7.5 Field 5 = number of interrogation table entries,
 5 octal digits, right adjusted.

Table entries are on type 3-2 records

E - 8

4.7.6 Field 6 = number of replies, 5 octal digits, right adjusted.

Replies occur on type 3-3 records.

- **4.8** Type 3-2 Raw Replies (interrogation table)
 - 4.8.1 Field 1 and 2 = 3 and 2 respectively.
 - 4.8.2 As many of these records as is required follow immediately after the type 3-1 record. Occur only if type 3-1 occurs.
 - 4.8.3 Fields 3 and 4 = interrogation time, double word, internal clock, LSB = 0.145 µsec., 6 + 6 octal digits from 16-bit machine.
 - 4.8.4 Field 5 = reply number plus one of last reply for this interrogation, reply numbers start at one.

Starting from the first interrogation, if there are 2, 1 and 3 replies, those numbers will be 3, 4 and 7.

- 4.8.5 Fields 6 through 14, taken in threes = time of interrogation and reply number plus one of last reply as in fields 3 through 5.
- 4.8.6 Field 15 = four 2-bit fields indicating interrogation mode, written as 3 octal digits right adjusted.
- 4.8.6.1 The mode of the last interrogation on this record (fields 3 through 5) is indicated in the least significant two bits.
- 4.8.6.2 Bit coding; 00 = nothing, 01= Mode A,
 10 = Mode C, 11 = other mode.
- 4.9 Type 3-3 Raw Replies (replies)
 - 4.9.1 Fields 1 and 2 = 3 and 3
 - 4.9.2 As many of these records as is required follow immediately after the group of type 3-2 records, occur only if type 3-1 occurs.
 - 4.9.3 Field 3 → reply time, LSB = 0.145 µs, 6 octal digits from 16-bit machine.
 - 4.9.4 Field 4 = reply code plus 4 additional bits6 octal digits from 16-bit machine.

starting from the most significant bit: Fl not required (within own reply time); miss - reply preceeding this was missed. SPI pulse X pulse A4, A2, A1, B4, B2, B1, C4, C2, C1, D4, D2, D1.

4.9.5 Fields 5 through 14 in pairs = time and reply code for additional replies, written as fields 3 and 4.
E-10

- 4.10 Type 4-1 First Correlated Targets (1 scan, 1 radar)
 - 4.10.1 Fields 1 and 2 = 4 and 1 respectively
 - 4.10.2 Normally present, may be deselected, occurs after widened azimuth window for each radar, if any replies meet the criteria for first correlation.
 - 4.10.3 Field 3 = scan #, 5 octal digits, right adjusted.
 - 4.10.4 Field 4 = radar internal ID # times 400 (8) plus internal target #, written as 5 octal digits right adjusted.
 - 4.10.5 Field 5 = combined Mode A code, written as 4 octal digits, right adjusted (A, B, C, D)

The Mode A code may be replaced by either of two error codes: 177761(8) = Garbled 177760(8) = Insufficient data These are written as 6 octal digits from a 16-bit machine.

- 4.10.6 Field 6 = number of hits (= # of raw replies into this correlated reply); 5 octal digits, right adjusted.
- 4.10.7 Field 7 = TOA (corrected for all circuit delays) LSB = 0.01 μ s, 5 octal digits right adjusted.

4.10.8 Field 8 = differential azimuth, in BAM's positive angle if target center occurs after own center, 6 octal digits from 16-bit machine.

45 deg = 020000, 90 deg = 040000, -45 deg = 160000, -90 deg = 140000.

4.10.9 Field 9 = altitude target, 2's complement value in units of 100 feet, 6 octal digits from 16-bit machine.

the altitude may be replaced by
any of four error codes:
177761(8) = Garbled
177760(8) = Insufficient data
100000(8) = No Mode C received
140000(8) = Illegal conversion

4.10.10 Fields 10-15 = information for another target, written like fields 4 through 9.

4.11 Type 5-1 Second Correlated Tracks (multi-scan, 1 radar)

4.11.1 Fields 1 and 2 = 5 and 1 respectively

4.11.2 Normally present, may be deselected, occurs after widened azimuth window for each radar, if any targets meet the criteria for second correlation.

4.11.3 Field 3 = scan #, 5 octal digits, right adjusted.

E-12

Field 14 = Own altitude, 2's complement value in units of 100 ft., 6 octal digits from 16-bit machine.

5. NOTES ON READING TAPE

. .

5.1 Conversion of the data on tape to the proper internal form of the processing computer is machine dependent. The conversion of positive values is straight forward but that of signed values is somewhat more complex.

16-bit positive values are a problem on 16-bit machines and 32 bit positive values are a problem on 32-bit machines.

5.2 Conversion of 32-bit time values (unsigned).

5.2.1 Nova (16-bit machine) READ (12,100) IA, IB, IC, ID 100 FORMAT (I1, 015, I1, 015) IF (IA. NE.0) IB = IB. OR. 100000K IF (IC. NE.0) ID = ID. OR. 100000K

5.2.2 CDC 6600 (60 bit machine) READ (12,100) IA, IB 100 FORMAT (06, 06) IB = IA * 65536 + IB

5.3 Conversion of Date & Time
 READ (12,100) IMNTH, IDAY, IYR, IHR, IMN, ISEC, ISCID
 100 FORMAT (12, 12, 12, 2X, 12, 12, 3X, 12, 11)

5.4 Unsigned 5 or fewer octal digit values

- 5.4.1 Nova (16-bit machine) READ (12,100) IB 100 FORMAT (1X, 0I5)
- 5.4.2 COC 6600 (60-bit machine) READ (12,100) IB 100 FORMAT (1X, 05)
- 5.5 Angles in BAM's
 - 5.5.1 Convert the value as if it were a signed integer.
 - 5.5.2 Convert to floating point
 - 5.5.3 Multiply by 90/16384 to convert to degrees or TT/32768 to convert to radars.

5.6 Conversion of unsigned 16-bit values

- 5.6.1 Nova (16-bit machine) READ (12,100) IA, IB 100 FORMAT (I1, 0I5) IF (IA, NE, 0) IB = IB. OR. 100000K
- 5.6.2 COC 6600 (60-bit machine) READ 12,100 IB 100 FORMAT (06)
- 5.7 Conversion of up to 8 packed interrogation modes.

	5.7.1	Read value in as 16-bit unsigned value
	5.7.2	Nova (16-bit machîne)
		MD1 = IB. AND.3K
		MD2 = ISHFT (IB, -2) . AND.3K
		MD8 = ISHFI (IB, -14), AND.3K
	5.7.3	COC 6600 (60-bit machine)
		MD1 = IB. AND.3B
		MD2 = SHIFT (IB, -2). AND.3B
		MD8 = SHIFT (IB, -14). AND. 3B
5.8	Conversion of signed 16-bit value	
	5.8.1	Nova (16-bît machîne)
		Read it exactly like unsigned 16-bit value.
	5.8.2	COC 6600 (60-bit machine, 1's complement)
		READ (12,100) IA, IB
		100 FORMAT (01,05)
		IF (IA. NE.O) IB = $-(1+(.NOT.IB.AND.$
		77777B))
5.9	Conversio	on of signed 32-bit value (ERROR SUM)
	5.9.1	Nova (16-bît machîne)
		Read it exactly like unsigned 32-bit value
		(tîme value)
	5.9.2	COC 6600 (60-bit machine, l's complement)
		READ (12,100) IA, IB, IC
		100 FORMAT (01, 05, 06)
		IB= IB * 65536 + IC
		IF (IA.NE.O) IB= -(1+ (.NOT. IB. AND.
		177777777B))

.

.

.

•

E-17

.

5.10.2 COC 6600 (60-bit machine) READ (12,100) IA 100 FORMAT (1X, 05) IL = IA. AND. 177B IH = SHIFT (IA, -8). AND. 177B

•

APPENDIX F

FIGURES AND TABULAR LISTINGS

.

•

F - 2

FIGURE 5.2-2

F-3

FIGURE 5.2-3

F - 5

-

-

FIGURE 5.2-13

F-17

TEST DATE: OCT. 15, 1975 RUN #3 PATTERN #10 MODE I33

FIGURE 5.2-15

TEST DATE: OCT. 15, 1975 RUN #4 PATTERN #10 MODE I33

FIGURE 5.2-16

8

FIGURE 5.2-17

TEST DATE: OCT. 15, 1975 RUN #5 PATTERN #10 MODE I33

FIGURE 5.2-18

1<u>3:5</u>8: 0

13:57:30

••

F-22

F - 23

F-24

FIGURE 5.3-5

F-28

F - 29

F-30

FIGURE 5.3-9

F-31

F-32

F-33

FIGURE 5.3-12

F-34

F - 3 5

F-36

F-38

c

٠

F-39

FIGURE 5.3-18

F-40

FIGURE 5.4-1

Ń

F-42

F - 43

F - 44

F - 4 5

F - 46

FIGURE 5.4-8

FIGURE 5.5-1

F-50

F-51

FIGURE 5.5-4

F-52

F-53

F-54

F-55

FIGURE 5.5-8

F-56

F-57

F-58

F-59

F-60

F-61

F-63

-

F-64

F-65

.

F-66

F-67

•

F-69

FIGURE 5.16-23

F-70

F-71

F-72

F-73

FIGURE 5.16-27

FIGURE 5.16-28

-

F-76

•

F-77

F - 78

FIGURE 5.16-32

F - 80

F-81

F - 8 2

F - 83

FIGURE 5.16-37

F - 84

~

FIGURE 5.16-39

,

F-86

F-88

FIGURE 5.16-43

F-90

F-91

•

F - 92

. . .

FIGURE 5.16-46

F-93

.

,

F-94

F-96

•

Altitude in Feet

F-99

FIGURE 5.16-52. RUN 1 PATTERN A DIVE MODE I 17

FIGURE 5.16-53. RUN 11 PATTERN B DIVE-CLIMB MODE I33

ς

F-100

F-101

Legend;

OWN OTHER

Δ

BCAS O

FIGURE 5.16-54. RUN 17 PATTERN C DIVE MODE I17

TABLE 5.3-1

TARGET CODE:	0777	RUN 293LCA	5 045 11/9/	76 ASR-4		DATE 24 JAN 197	7 PAGE	000
-	SCAN	BCAS	EAIR	TYA	8CAS	EAIR	DAZ	• •
TIME	N8.	TOA	TÖA	DIFF	DAZ	DAZ	DIFF	
1:22:49.0	33	80+050	79.599	.451	-6+163	-6.380	•217	
1:22:52.9	34	78+590	78.079	•511	•6+438	+6+290	••148	
1:22:56+8	35	77+090	76.634	.456	+6+833	-6.099	+ 734	
1:23: •7	36	75+550	75.146	•4C4	+5+784	-5.884	+100	• • •
1:23: 4+6	37	74.040	73.706	• 334	-4+592	+5+631	1+039	
1:23: 8+6	38	72.500	72.136	• 364	-5.449	+5.371	++078	
1:23:16+4	40	69.400	68,995	• 405	-4+999	-4-868	++131	
1:53:50+3	41	67.860	67.376	.484	+4+949	-4.730	++219	
1:23:24+2	42	66+280	65.779	.501	• 4 • 9 4 9	•4•619	• 330	
1:23:28+2	43	64.650	64,175	.475	-4+757	+4.5IZ	• • 245	
1:23:32+1	44	63.070	62,666	• 404	+4-878	-4.449		
il23:39+9	46	60+030	59.680	.350	•3-367	-4-358	991	
1:23:43+8	47	58.450	58+136	.314	•4•708	•4.306		
1123:47.8	4¥	56+940	56.573	• 367	-4.735	-4.339		
1:23:51.7	49	55.490	55.052	.438	-3.774	-4-372	.598	
1:23:55+6	50	54.000	53.565	435	-4-532	-4.391		
1:23:59.5	51	52.540	52.151	.389	=4+631	-4-430	201	
1:24: 3.4	52	51.100	50.723	377	-4-515	-4-458	+057	
1:24: 7.3	53	49.600	49.328	.272	+4+213	+4+475	.262	
1:24:11.3	54	48.140	47.825	315	-4-631	-4.471		
1124:15+2	55	46,660	46.329	331	-4-872	-4-456	416	
1124119-1	56	45.230	44.854	376	-5.054	-4.428		
1:24:23.0	57	43+800	43.386	.414	+4+466	-4.412		
1:24:26.9	58	42.430	41.982	.448	•4•158	• 4 • 372		
1:24:30.9	59	41.040	40.593	. 447	-3-983	-4.302	319 .	
1:24:38.7	61	38.240	38.011	.229	-4+246	.4.136		
1:24:42+6	62	36+900	36.619	.281	+4+202	-4.034	168	
1:24:46+6	63	35.520	35,167	.353	-4.252	•3.959		
1:24:50.5	64	34.220	33.829	.391	-3.774	-3.890	•116	
1:24:54.4	65	32+880	32,421	.459	•3•439	-3-816	+377	
1:24:58.3	66	31.530	31.102	.428	-5-048	•3•761	+1+287	
1:25: 2.2	67	30+170	29.766	.404	-4-125	•3•710	++415	
1:25:14+0	70	26+550	25.891	.329	-4.279	-3.654	- + 625	
1:25:17.9	71	24.970	24.634	.336	•3•461	•3•696	+235	
1:25:21.9	72	23+680	23.277	.403	+3+686	•3•773	• 087	
1:25:25.8	73	22+430	21.975	.455	-3,950	•3•856	++094	
1:25:29.7	74	21.210	20.799	.411	-4.202	•3•921	++281	
1:25:33.6	75	20+020	19.660	.360	•4 • 136	•3•971	++165	
1:25:37.6	76	18,950	18.559	. 391	+4+504	+4.001	+ 503	
1:25:41.5	77	17.910	17.570	.340	•4 • 598	+4+031		
1:25:45+4	78	16+930	16.601	.329	+5+707	=4.071	+1+636	
1:25:49.4	79	15.990	15.612	378	+4+356	+4.079	277	
1:25:53.3	80	14.990	14.609	.381	-4.356		311	
1:25:57.2	81	14.010	13.629	• 381	-3.724	++-002	1278	
1126: 1+2	82	13.090	12.637	.453	+4+175	+3.986	-189	
11241 6.1	63	12.200	11.792		-2.004	-3.047		

__ __ __ __ _

BCAS-TOA/DAZ SUPPORTING DATA

F-102

• • • • •

PAGE 0008	DAZ	DIFF		• 0 4 1	•139	•169	• 028	•384	• 009	-293	SUM 0F SQUARES= 11+1:	
E 24 JAN 1977	EAIR	DAZ		-6.402	-6.363	-6.365	-6.318	-6.284	•6.288	-6.282 -		
DAT	BCAS	ZYO		644.9-	-6.224	-6.196	-6.290	-5.900	-6.279	-6.575	×= 88 88 88	
ASR-4	TBA	DIFF		.183	1/1.		.169	•139	•113	.167	• 354	•
S 045 11/9/76	EAIR	TBA	••••	2.687	2.609	2+546	2.461	2,341	2.287	2.223	:•0•5 Z+0	104 2+D+1
SIS PROGRAM RUN 5 ICA	BCAS	TBA		2.870	2.780	2•690	2-630	2•480	2.400	2+390	• • •	C 63 •
Z ERROR ANALY CODE: 0777	SCAN	TIME N9.		4.0 113	7.9 114	11.8 115	15.8 116	23.6 118	27.5 119	31.5 120	MEAN:	

F-107

•

٠

A/DAZ ERRO	R ANALYSI	S PROGRAM	045 11/9/	76 ASR+4	Q	ATE 24 JAN 197	77 PAGE	0002	
NULT LOULT	SCAN	BCAS	EAIR	TOA	BCAS	EAIR	DAZ		
TIME	N8 .	TBA	TÖA	DIFF	DAZ	DAZ	DIFF		
****						**=*			
:55:59+6	15	2+680	2.510	.170	+5+339	+5+227	**112		
:56: 3+5	16	2+850	2.701	.149	-5+037	•5•302	•265		
:56: 7+4	17	3.020	2.879	•141	+5+125	•5•336	+211		
:56:11+4	18	3.250	3.089	.161	+5+268	-5.394	•126		
:56:15+3	19	3-530	3.284	•246	-5.674	-5+430	++238		
:56:23.1	21	4 • 070	3.852	.218	+5+400	•5+564	104		
:56:27.1	55	4+400	4.232	•168	+5+922	*5+622	- 300		
:56:31+0	53	4 • 870	4.623	•24/	-6.059	• 5 • 070	++301 +05b		
:56:34.9	24	5+320	5.118	.202	*3+8/5	*2+02*	+007		
:56:38.9	25	5.980	5./13	• 60/	*3+310 -5.370	-4-078	. 289		
:56:42-8	26	6+670	6.410		-5+//5	*6+078	.055		
156:46+7	2/	7+450	/+218	102	-4.19E	-6-312	.197		
136:3016	28	5+380	8.08/	1224	-04123	-61312	189		
126124+2	29	9+44U	7+110	. 361	-6,017	-6.497	- 413		
50.58.5	30	10+610	10:317	- 765	-6.729	-6.608			
571 2+4	31	12+030	11+000	*30J	-6.718	-6.721	+003		
57: 6+3	32	13+610	130110			-6.875			
57:10:3	33	13.220	14.000	291	-7.020	-6-922	098		
5/:14+2	34	1/+050	20.826	+ 454	=7+025	#7+14C	065		
57:52+1	30	22-580	23.044	.514	-7.339	7.261	++078		
57:20.0	3/	23+360	231080		-7.322	7.377	055		
57,23,3	30	28.440	27.954	486	+7+180	+7+415	.235		
57:33.0		20.020	20.459		-7+630	•7 • 466	++164		
57:37:0	40	36.190	35.691	499	-7-482	+7.681	• 199		
57:40.5	42	38+800	301071		-8-113				
67.53.5	45	41.490	41.038	.452	+8+152	•7•731	++21		
67.67.4	45	44.290	43.733	.557	=8+C69	•7•796	••273		
158 1.3	46	47.060	46.549	.511	-8.251	-7.844	-+407		
58 9.2	48	52.710	52.167	.543	-7.910	•7•877	-:033		
58:13.1	49	55.540	55.008	.532	-8.229	-7.932	++297		
58:17:0	50	58+460	57.955	,505	+8+372	•7•937	••435		
58:20.9	51	61+380	60.911	.469	-8-168	-7.880	••288		
58:24+9	52	64+280	63.797	.483	•8•443	•7•901	++542		
58:28+8	53	67+200	66.655	.545	•7•828	•7.966	+138		
:58:32.7	54	70.090	69.611	.479	•8•251	•7•998	••253		
58:36+6	55	72+960	72.509	.451	-8-179	-8.040	••139		
:58:40.6	56	75+830	75.382	.448	-7.982	-8+107	•125		
158:44.5	57	78.730	78.144	.586	-8-234	+8+164	++070		
58:48.4	58	81+630	81.055	.575	•8•5 <u>1</u> 4	•8·218	++296		
:58:52.3	59	84 • 490	84.042	.448	-8+701	•8•312	••389		
:58:56.3	60	87.390	86.973	.417	-8.278	+8+418	•140		
159: 4+1	62	93.280	92.728	•552	-8+833	•8+785	=+048		
159: 8.0	63	96+220	95.705	•515	- 9+240	-9.011	••227		
			· · · · · · · · · · · · · · · · · · ·						
			DA7 5+D+1	.223	N= 43 SL	JM= •3	971 SUM OF	SQUARES	2+46

•

TIME 5 12:7:11:2 12:7:15:2 12:7:19:1	CAN			110		C ···	2 4 2	
TIME 121 7:11:2 121 7:15:2 121 7:19:1		DCAU	T > T	VD1	BCAS	EALK	3	
121 7111.2 121 7115.2 121 7119-1	• 0 •	TOA	TBA	DIFF	DAZ	DAZ	DIFF	
121 7:11.2 121 7:15.2 121 7:19.1	:		1	* * *		•		
121 7:15•2 121 7:19•1	53	89.440	89.055	.385	-12+947	-12.482	• • 465	
121 7:19-1	24	87.920	87.546	4/E.	-12-876	-12-400		
	5 C	86.390	86.026	• 364	-12+393	-12,336	• • 057	
121 7:43.0	26	94•790	84.479	116.	-12-305	•12•301	* 00 * *	
121 7:30.9	28	81.740	81.266	+ Z + •	-12.250	-12.194	••056	I
121 7:34.8	53	80.160	79.724	• 436	-11-574	-12,115	145.	
12: 7:38.8	OE	78.590	78.121	.469	-11-997	-11.974	023	
12: 7:46.6	32	75.450	75.163	.287	+9+•11-	-11-554	060•	
		72.950	79-636	414	-11-635	•11.309	• • 326	
	1			976		-11-080	. 461	
440c1/ 121					***		424	
12: 8: 2.3	95	64.340	68.3/8		010+11-	-10-22	275	
12: 8:18.0	0.4	63+430	63.141	- 207	544044			
12: 8:22•0	41	61•960	61-626	* 33 #	-10.382	-10.624	• 242	
12: 8:25-9	2+	60.430	+01-09	•326	-10.629	-10-546	F 20 + +	
2: 8:29.8	M 4	59.000	58.613	• 387	-10-816	-10-476	• 340	
P: 8:33.7	44	57.500	57.082	•418	-10.096	-10+58	• 362	
P: 8:37.7	5	55.990	55.560	004.	-11.036	-10.451	••585	
21 214	46	520	54.125	395	-10.849	-10.445	+0+	
	1	51.080	52.701	.379	-10.459	-10.424	••035	
5. 5. 40 ×		51-200	K1 - 273	142	10:541	•1C•424	11	
	. 4	50.120	49.825	595	-10-514	-10.401	••113	
		11-21	48-274	925	-10 580	-10-370	C12.	
	5.5	47.150	46.760	066.	-10-206	-10.316	-110	
		001-44	6d. E4	197	-9-981	-10.167	186	
2: 9:13.0	4	42.680	42.286	• 394	+06*6-	-10.089	.185	
21 4:17 D	55	012-14	40.847	• 363	405.01-	-10.000	-+305	
2: 9:20.9	56	39.730	39+407	.323	-9.778	-9.964	•186	
21 9:24.8	57	38.280	7.967	-313	-9.965	•9•936	029	
	. ec 5 tr	026.95	36.535	.385	-9 893	•9•985	• 086	
2: 9:32.7	55	35.570	35.127	E44.	-10-206	-10-026	180	
2. 9.36.6	60	34 230	33.796	+ C +	-9.157	-10.156	• 999	
2:0:0:0	61	32.960	32+593	-367	-10-854	•10•312	542	
	• •	31.700	11 230	. 170	-10.849	•10.413	436	
0100 P	43	20.450	222		-10-635			
	14	000.000	28.905	.315	-10-728	-10.556	172	
9.54.2	<u>6</u> 9	28.020	27.644	.376	-10.481	•10•573	-092	
	14	26.780	26.351	647.	-10.629	-10.531	••098	
5110 A.1	1 1 1 1	25.560	25.143	<u> </u>	•11.080	-10.483	597	
		24.270	24.014	.356	-10,360	-10.442	.082	
2110114	69	23.200	22.884	.316	•10.492	-10.355	••137	
	5	22.060	21.735	. 325	-10-404	-10.240	164	
9.01.01.0	2	20.950	20.659	164.	•10.102	-10.145	E#0.	
	•••	19.870	19,534	956.	-10.031	•10.049	•018	
C: 10:53.1	,	010-01	18.464	496.	-9×789	-9-954	.165	
1+/3101:21					- 10 - 04 -	- 0 - B57	- 190	
2110:31.0		1/000	00101					

642•2 199•01	53*03# 20W 9F 50UARES# +4*788 50M 8F 50UARES#	лые П⊮≖	S SZ •N S SZ •N	E60* +/E*	:•0•5 ¥01 :•0•5 Z¥0	80E • 790 • •	TBA MEAN:
	6/04	DC246e	C9116-	781+	99/46	056+5	CTT 9+21:51
	09546	077+6=	809164		076+6	080**	STT 9+6 251
	660+	+9+223	891+6+	1/1•	666°E	041.4	211 6 121
	621	c12*6*	***	0+1*	080.4	+•550	111 6-99121
	191•t	-9.520	690 * 8 -	/81*	E/1*#	096++	011 0*EG:21
	891+-	•6*S36	*0**6*	· 512 ·	105**	4.720	15:41.5 107
	G21++	252+6-	11E . 6-	FGI*	4.627	084.4	12:37.3 106
	£61+	682.6+	961 .6-	851*	260+9	092+9	12:55.5 103
	692++	924.6.	569 . 6-	161*	652*5	05**5	201 9.12:21
	+91	284 *6*	949+6-	891*	254*5	2*950	101 2.17.1
	5+0+	125.64	261.6.	1521	£18+9	090+9	66 8•6 121
	• • 225	1/5.6.	960+01+	641*	160.4	6.210	86 6•9 :51
	1+564	169.6+	EEE • 8 •	2/1	9.538	014.9	12: 2.0 27
	411+-	989*6*	052*6*	+12+	954 * 9	029*9	96 0*85:11
		199*6*	691.64	292*	869*9	096*9	56 1.45:11
	∠ † ĭ•	E89°6•	989.6.	+81*	996*9	051•2	11:20+5 B#
	•11*	199*6*	149.6-	6£51	58++2	1.720	26 6+2+11
	196++	576.	9E0+01-	₩ ∠ ↓*	962*2	026•2	16 **86:11
	••526	849.6.	+06+6+		40I+8	005 • 8	06 <u>5**E:11</u>
	646+-	869*6=	L86+6+	952*	*04 *8	099•8	68 S+0E:11
		+85.6-	517+2+	842.	8.722	046.8	88 9:92:11
	60+	E74.24	588+6=	102.	69**6	049•6	98 2+81:11
	E61++	E6E*6*	985+6+	<u>571.</u>	552*01	10++30	+8 6+01:II
	866++	161.6-	-10 - 156	70E.	E#0*11	05E • 1 1	11: 3.0 85
	<u></u>	•0*509	154.8.		11.642	056-11	18 1.65:01
	E11+-	* 6 *528	12E+6+	-517	12*3#3	15+290	10:25+2 80
		8EE*6*	55E • 6 •	•\$22	590°ET	13+350	6 <u>/</u> 2•15:01
	STI++	£77°6-	855*6*	175.	13.889	091*#1	87 E+74:01
	<u>+</u> 81•	<u>++5*6+</u>	096 6	<u>\$68</u>	1+•722	066**1	<u>4 + E + : 01</u>
	924**	5+6+	811+01-	† 5€°	9 <u>9</u> <u>9</u> <u>9</u> <u>5</u>	016*51	9Z S+6E:01
	••••		••••			••••	
	11 0	zva	ZVQ	DIFF	ABT	AGT	•ON JWII
	ZAG	AIA3	SA28	ABT	FAIR	_SA28	NY OS
	1100 3044 7761	DATE 24 JAN	I	4-92A 8	2/6/11 540 SV	наязаядага Ката равзкан	7170 19061 0777

TOA/DAZ ERROR	ANALYS	IS PRÓGRAM	0 0 45 11/9/	76 158-4		DATE 24 JAN	1977 PAGE	0012	
TANGET COVET	SCAN	RUN O. LUA	5 045 11/5/ FATR	70 A3N=4 TRA	BCAS	EATR	DAZ		
TIME	NB .	TRA	TAA	DIFF	047	DA7	DIFF		
12:16:56+6	3	4.930	4.716	.214	-9.794	-10-040	.246		
12:17: 5		5,120	4.977	.143	-10-052	-10-141	• 089		
12:17: 4.4	5	5+340	5.184	156	-10-228	-10-139	-+089		
12117: 8.3	····	5.530	5.361	.169	-10-541	-10-089	452		
12117:16-2	Ā	5.890	5.749	.141	=10-148	-9-903	- 265		
12:17:20.1		6.160	5.975	185	-8-893	-9-806	.913		
12:17:24-1	10	6.430	6.217	.213	-9.959	9.700	- 259		
12117131.9	12	7.030	6.771	.259	9.256	9.467	+206		
12:17:35-8	17	7.420	7,183	.237	-9.267	-9.439	172		
12117.30.8	14	7.970	7.727	243	-9-443	Q. 405	045		
12:17:47.6	16	9,220	9.012	- 208	-9-822	-9.635			
12117-55-5	18	10.760	10.466		- 9,827	9.617	210		
12:17:59.4	19	11-680	11.356	324	-9-404	•9.645	•241		
	- 21	13.870	11.574	.296	-10-003	-9.680			
12:18:15.1	23	16.740	16.317	.423	-9-597	-9.782	185		
12:18:23.0	- 25	20.100	19.818		-10-047	-9.881			
12:18:30.8	27	24.070	23.631	.439	-10-129	•9.936	••193		
12118:34.8	28	26.190	25.803			+10.012	179 -		
12118:38.7	29	28.410	28.052	358	-10-36C	+10.019	341		
12:18:42+6	30	30.750	30.367	.383	-10.096	10.058	••038		
12118:46.6	31	33.120	32.735	.385	-9+937	-10.086	+149		
12118:50.4	32	35.600	35.085	.515	•9.525	-10.102	•577		····
12118:54+4	33	38.130	37.723	.407	-9.849	-10-124	•275		
12119: 2.2	35	43.300	42.806	494	-9.871	-10-174	• 303		
12:19:10+1	37	48.640	48.250	.390	-10-519	-10.245	-+274		
12:19:21.9	40	57+010	-56+568	.442	-9.871	+10+445	• 574		
12119:25.8	41	59.860	59.489	.371	+10+706	-10-556	+ 150		
12:19:29.7	42	62.780	62.374	.406	-10-344	+10+681	+337		
12119:33.6	43	65+640	65.125	515	+11+497	+10.796	-+701		
12:19:41.5	45	71++10	70.975	.435	-12.057	+11.006	+1+051		
12119:49.4	47	77.260	76.749	.511	-11-448	-11-259	++189		
12:19:57.3	49	83.030	82.620	.410	-11-492	+11+644	+152		
12:20: 9.1	52	91.730	91 241	489	-12-634	•12 •226	- 408		
12120:13.0	53	94.610	94.144	.466	-11.816	•12.380	• 564		
12120:17.0	54	97.490	97+163	,327	-12-250	-12-532	•282		
DAZ MEAN:		•006	DAZ S.D.:	.387	N= 35	SUM=	.193 SUM BF	SQUARES=	5.098
TRA MEANS		+340	TOA SODAL	.116	N# 35	SUMe	11.917 SUM OF	SQUARES .	4.519

12133:22.8 96 2.610 2.382 .228 3.455 2.778 .677 12133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 12133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 12133:30.7 98 2.4410 2.280 .130 3.433 2.873 .560 12133:30.7 98 2.4410 2.188 .222 3.439 2.060 .869 12133:30.7 98 2.4410 2.093 .127 3.439 3.031 .408 12133:30.5 100 2.240 2.032 .208 4.175 3.124 1.051 12133:46.4 102 2.070 1.896 .174 3.878 3.258 .620 12133:50.2 103 2.000 1.857 .143 4.037 3.306 .731 12134:45.4 102 2.610 3.768 3.184 .584 .1234 .132 .143 12134:50.2 103 1.680 1.475 .205 3.796	DAZ MEAN TOA MEAN		•214 •274	DAZ S+D+: THA S+D+:	•492 •088	N= 59 SUM= N= 59 SUM=	1	12.599 SUM OF SQUA 16.139 SUM OF SQUA	RES= 16+72 RES= 4+860
12133:22.8 96 2.610 2.382 .228 3.455 2.778 .677 12133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 12133:30.7 98 2.410 2.280 .130 3.433 2.873 .560 12133:30.7 98 2.410 2.188 .222 3.439 2.960 .869 12133:30.7 98 2.410 2.093 .127 3.439 3.031 .408 12133:30.7 98 2.420 2.093 .127 3.439 3.031 .408 12133:30.7 98 2.400 2.032 .208 4.175 3.124 1.051 12133:46.4 102 2.070 1.896 .174 3.878 3.258 .620 12133:50.2 103 2.000 1.857 .143 4.037 3.306 .731 12134:59 107 1.710 1.553 .157 3.768 3.184 .584 12:34: 19.9 108 1.680 1.475 .205 3.796 3.148									<u> </u>
2133:22.8 96 2.610 2.382 .228 3.455 2.778 .677 2133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 2133:30-7 98 2.410 2.188 .222 3.433 2.873 .560 2133:30-7 98 2.410 2.188 .222 3.433 2.873 .560 2133:30-7 98 2.410 2.188 .222 3.439 3.031 .408 2133:34.6 99 2.220 2.093 .127 3.439 3.031 .408 2133:46.4 102 2.070 1.896 .174 3.878 3.258 .620 2133:46.4 102 2.070 1.896 .174 3.834 .620 .133 2133:50.2 103 2.000 1.857 .143 4.037 3.326 .731 2134:5.9 107 1.710 1.553 .157 3.768 3.184 .584 2134:5.9 108 1.680 1.475 .205 3.796 .148 .648 <td>34:29+5</td> <td>113</td> <td>1.370</td> <td>1.222</td> <td>,148</td> <td>3.192</td> <td>2.854</td> <td>• 338</td> <td>·</td>	34:29+5	113	1.370	1.222	,148	3.192	2.854	• 338	·
2:33:22.8 96 2:610 2:382 .228 3:455 2:778 .677 2:33:26.8 97 2:410 2:280 .130 3:433 2:873 .560 2:33:30.7 98 2:410 2:888 .222 3:433 2:873 .560 2:33:30.7 98 2:410 2:888 .222 3:829 2:960 .869 2:33:30.6 99 2:220 2:093 .127 3:439 3:031 .408 2:33:38.5 100 2:240 2:032 .208 4:175 3:124 1:051 2:33:346.4 102 2:070 1:896 .174 3:878 3:258 .620 2:33:46.4 102 2:000 1:857 .143 4:037 3:326 .731 2:33:50.2 103 2:000 1:857 .143 4:037 3:326 .731 2:34:5.9 107 1:710 1:553 .157 3:768 3:184 .584 2:34:5.9 108 1:680 1:475 :205 3:796 3:148 .6	:34:21.6	111	1.560	1.308	252	4.065	2.911	1.154	
2133:22.8 96 2.610 2.382 .228 3.455 2.778 .677 2133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 2133:30.7 98 2.410 2.188 .222 3.433 2.873 .560 2133:30.7 98 2.410 2.188 .222 3.433 2.873 .560 2133:34.6 99 2.220 2.093 .127 3.439 3.031 .408 2133:34.6 99 2.220 2.093 .127 3.439 3.031 .408 2133:34.6 100 2.240 2.032 .208 4.175 3.124 1.051 2133:46.4 102 2.070 1.896 .174 3.878 3.258 .620 2133:46.4 102 2.000 1.857 .143 4.037 3.326 .731 2133:50.2 103 2.000 1.857 .143 4.037 3.326 .731 2134:59 107 1.710 1.553 .157 3.768 3.184 .584	134, 313.	109	1+560	1.428	132	3.593	3.079	•514	
2133:22+8 96 2+610 2+382 +228 3+455 2+778 +677 2133:26+8 97 2+410 2+280 +130 3+433 2+873 +560 2133:30+7 98 2+410 2+188 +222 3+433 2+873 +560 2133:30+7 98 2+410 2+188 +222 3+439 2+960 +869 2133:34+6 99 2+220 2+093 +127 3+439 3+031 +408 2133:34+6 99 2+220 2+093 +127 3+439 3+031 +408 2133:34+6 102 2+070 1+896 +174 3+876 3+258 +620 2133:46+4 102 2+070 1+896 +174 3+874 3+258 +620 2133:46+4 102 2+610 3+834 3+334 3+334 3+334 -731 2133:50+2 103 2+000 1+857 +143 4+037 3+366 +731 2134:6-5 107 1+250 157 2+748 2+164 +544 -544<	134; 372 1341 9.9	108	1-480	1.475	.205	3.706	3.148	*448	
2133:22.8 96 2.610 2.382 .228 3.455 2.778 .677 2133:26.8 97 2.410 2.280 .130 3.433 2.873 .560 2133:30.7 98 2.410 2.188 .222 3.629 2.960 .667 2133:34.6 99 2.220 2.093 .127 3.439 3.031 .408 2133:36.5 100 2.240 2.032 .208 4.175 3.124 1.051 2133:46.4 102 2.070 1.896 .174 3.878 3.258 .620 2133:46.4 102 2.610 3.834 .2133:46.4 .226 .721	1331-012	107	1.710	1,553	- 157		3.194		
2:33:22.8 96 2.610 2.382 .228 3.455 2.778 .677 2:33:26.8 97 2.410 2.280 .130 3.433 2.873 .560 2:33:30.7 98 2.410 2.188 .222 3.829 2.960 .869 2:33:30.7 98 2.410 2.188 .222 3.829 2.960 .869 2:33:30.6 99 2.220 2.093 .127 3.439 3.031 .408 2:33:38.5 100 2.240 2.032 .208 4.175 3.124 1.051 2:33:46.4 102 2.070 1.896 .174 3.878 3.258 .620	13317019	102	2+610	4.887	. 4 4 3	3+834	2.206	. 731	
2:33:22.8 96 2:610 2:382 .228 3:455 2:778 .677 2:33:26.8 97 2:410 2:280 .130 3:433 2:873 .560 2:33:30-7 98 2:410 2:188 .222 3:423 2:960 .869 2:33:30-7 98 2:410 2:188 .222 3:433 2:873 .560 2:33:30-7 98 2:410 2:188 .222 3:439 3:031 .408 2:33:30-7 98 2:420 2:093 .127 3:439 3:031 .408 2:33:38-5 100 2:220 2:092 .208 4:175 3:124 1:051 2:33:38-5 100 2:240 2:032 .208 4:175 3:124 1:051	133;7014	102	2.070	1+090	+1/4	3+8/8	3+255	+620	
2:33:22.8 96 2:610 2:382 .228 3:455 2:778 .677 2:33:26.8 97 2:410 2:280 .130 3:433 2:873 .560 2:33:30-7 98 2:410 2:188 .222 3:829 2:960 :869 2:33:30-7 98 2:410 2:188 .222 3:429 3:031 :408 2:33:30-7 98 2:410 2:188 .222 3:439 3:031 :408	133138+5	100	2.240	2.032	• 208	4.1/0	3.124	1+051	
2:33:22.8 96 2.610 2.382 .228 3.455 2.778 .677 2:33:26.8 97 2.410 2.280 .130 3.433 2.873 .560 2:33:30.7 98 2.410 2.188 .222 3.829 2.960 .869	133134+6	- 99	2+220	2.093	+12/	3.439	3.031	+408	
2:33:22•8 96 2•610 2•382 •228 3•455 2•778 •677 2:33:26•8 97 2•410 2•280 •130 3•433 2•873 •560	133130+7	98	2+410	2.188	•222	3+829	2.960	•869	
2:33:22-8 96 2.610 2.382 .228 3.455 2.778 .677	133:26.8	97	2:410	2.280	•130	3.433	2.873	•560	
	133;22+8	96	2+610	2.382	•558	3.455	2.778	• 677	
.2:33:15:0 94 2:760 2:613 :147 3:186 .2:658 :528	:33:15+0	94	2.760	2.613	•147	3•186	.2.658	• 528	
···· ··· ···· ····	****	****	****			****		+	
TIME NO TOA TOA DIFF DAZ DAZ DIFF	TIME	N8 .	TBA	TBA	DIFF	DAZ	DAZ	DIFF	

•

· · · · ·

äã	REGRAM IN 9 LCAS -	045 11/9/76 A	5R+4 -3 8uTBBUND		DATE 24 JAN 1.	977 PAGE	EOno		
P	BCAS	EAIR	TUA	BCAS	EAIR	DAZ			
	A D T D A	VAI	0117	747					
•	98.690	98.504	.186	1 • 159	1•293	+0134			
ճ	1.880	91.590	• 290	1 • 483	1.675	-•192			
o ا	0.070	89.807	E92.	1.307	1-563	• 256			
80	8.360	88.067	• 293	1•165	1.476				
õ	6.590	86.324	.266	1.236	16491				
00 0	•150	82.868	285	191•2	1000				
	040	100-10		1000	0.117	- 467			
		74040			2.226	E2E 1			
	000	10-01	414	012.0	2-241	249			
	009	60E +4	162	2440 254	2.308	142			
2	068.	72.682	208	2.571	2,355	£13.			
17	•160	70.955	.205	2.598	2.430	•168			
69	450	69.143	• 307	2.565	5+490	540.			
65.	920	65,514	•406	2=324	2.588	264			
29	400	62.111	•283	2+2+1	20543	292 • •			
90	.660	60.477	.183	2•016	C++2				
- - 		5/*075	105.	1400 V	11000				
	0//		• 36.0	162-1	22044				
	050	50.716	400	1.950	2.090				
6.4		49.179	122.	196•1	50129	= 168			
47	.730	47.531	•199	1.780	2.157				
4	• 080	45.790	062.	2.164	5•184	•• 050			
4	.370	+ + O = + +	• 326	2.065	2.236	171			
Ŧ	•610	42.245	· 3+5	₩2E • 2	CEE • Z	110+-			
4	.920	40.516	*0*	2.516	1++02	+/0+			
m i	7.510	37.284	•229			+ 50 · -			
5	0.40	30.030				1001			
Ñ I					111.6				
Ĭ		60.000 24.770	100	790.5	2.450	(29.			
9 1		21.21		1.001	2.303	1.004			
ũ÷	00000	18.720	420	2.648	2.244	+0+ •			
•	7.810	17.463	L+E.	2 428	2.324	•104			
-	5.180	14.943	.237	2.549	2,532	• 017			
ㅋ	.790	11.388	402	2 • 670	2.699	029			
12	.720	10.407	EIE.	3.203	2.724	644.			
-0	.820	6.540	.280	3.312	2.830	• 482			
	.320	6.002	81E.	3.433	2•835	• 598			
	5.050	4.748	• 302	3•939	2+778	1.161			
l	4.300	4.082	218	2 • 620	2 • 689	069			
	4 • C 4 0	3.794	•246	3•285	2+663	• 622			
	3.870	3=547		2 - 7 - 1	2002	+ 90 •			
	30.500	/21.5			00917				
7		E 40 . C	TF1		0.454	122			
229°E	-120 20W BE 20NVERS	=W 	54 2N	■N ■N	120 · 905 ·	:• 0• 5 V01 :• 0• 5 ZV0	28E • 500 •		DAZ MEAN
-------	---------------------	---------	--------------	----------	----------------	----------------------------	----------------	------------	----------
		E88.	440+		005.	099+95	096+96	c £	E+0c17+1
	026+-	1.260	0EE •		• 598	256*56	002**6	*5	64921161
	980 •	526 • 1	120+	2	755.	859+68	0/1+98	te	94471741
	852	886*1	064.	tt	686.	/52.08	029+08	67	/+9 :1+1
		S+038	804 *	i	0.6.6.	066 • / /	058+//	07	9+2 11+1
	194.	51123	• 620	2	9/**	\$/5.\$/	060+67	/7	8+96:04:
	9+0++	242.345	962 •		c/2	G28 • 1/	001+2/	62	6++c:0+:
	IGE+-	5+256	541 *	2	896 *	216.89	092+69	c.7	0+1c:0+:
	875.0	516+2	129.		82+*	231 155	099+69	53	7+6+10+1
	••520	3+090	048=	2	69E*	1+5+09	069.09	22	£+65:04:
	589+-	661°E		2	1333	118.15	014+45	ĩž	E+GE:0+:
	++515	3.206	*66 *	2	964*	+09+19	0+6•19	61	++/2:04:
		211°E	stt.		69E*	188*5*	052+9+	ži	9+6110+:
	999 •	3º103	859 .		0/6*	040*64	01++E+	- TP	/+61:0+:
	•510	3+0+5	1+525		100.	E89*2E	068.75	÷1	8.4 1041
	099•	5+866	919*6		04+	016 · 1E	35+380	21	6+691681
	E19+	5*812	854.68		69E*	56+111	51+080	õī	1+201601
	668+	5.853	989 • 8		•330	54.170	005*#2	6	1.84:62:
	E19+	724897	015+6		04*	51.570	0+0+22	8	1.4416E:
	+69+	896.5	2+9+5		•258	19.212	074.61	2	2.0+1661
	162	3°08¢	5-922	2	• 350	046**1	12+530	<u>c</u>	13313513
	6233 ÷	181•E	249+2	?	54E+	12*338	C4E.E1		++82:66:
	6+1++	3+531	3+085		157*	692°11	012+11	ε	9.421621
	176+	3•298	699+8	2	+9 +*	952*6	10+550	5	S+0216E1

	DIFF	ZVO	zva		DIFF	A8T	V BI	• GN	JWII
	ZVO	91A3	SYJ8		AGT	EVIR	SYDE	NYDS	

TUA/UAL LAND	H ANALYSIS	PROGRAM	1 CAR 045	11/9/76 ASR-4			•••	
TARUET LOUET	0///	KAN TT	LLAS 045	TÂA	BEAS	FAIR	DAZ	
****	JLAN	BLAS		DIFF	DAZ	DAZ	DIFF	
1145	NU	JUA						
****				•===	4.417			
12:49:33.8	<u></u>	93+310		452	4.625	4.798	••173	
12149:37+7	22	91+620	91+100		5.059	5.144	++C85	
12149141+0	23	83.300	87.727	.450	5.570	5.493	+Č77	
12:49:45+0	24	88+210	8/*/00	,	5,929	5.708	+131	
12149:49+5	25	86+430	80+112	1316	5.304	5.797	403	
12149:53+4	26	84+710	84+400		5-804	5.816	010	
12:49:57+3	27	82+970	82.044	• 320	5.317	5.702	185	
12:50: 1.3	28	81+240	80.80	•433	3.31/	5 404	- 4270	
12:50: 5+2	29	79.450	78.966	•484	3+334	5.004	2326	
2:50: 9.1	30	77.620	77+163	.43/	2+190	5.540	433	
12:50:13+1	31	75.830	75.38		3+038	20231		
2150:17.0	32	74.040	73.686	.354	5+444	5.526	433	
2150:20.9	33	72.300	71.979	.321	5+070	5.003	***33	
2150:24.9	34	70+550	70+17	.375	5+147	0.462	••313	
12:50:28+8	35	68.870	68.46	.408	4.993	5.408		
12150:32.7	36	67-150	66,700	.444	5+317	5.325	••008	
12150:36+7	37	65.500	64.96	.537	5+125	5.202	••0//	
12150:40+6	38	63.800	63.341	452	4+823	5.091	++200	
2150:44+5	39	62.080	61.77	.308	4.905	4.994	-+083	
2150:48.5	40	60+490	60.09	,392	4+691	4.935	**244	
2150:52.4	41	58+810	58.430	,380	4 • 845	4.922	-+077	
2150:56.3	42	57.130	56.77	,356	4.384	4.922	++538	
2151: +3	43	55+450	54.95	3 •497	4.510	4.908	++398	
2151: 4.2	44	53.770			5+065			
12151: 8+1	45	52.030	51+604	.424	5+219	5.056	•163	
2:51:12.1	46	50+280	49.91	370	4+774	5.159	385	
12:51:16.0	47	48.540	48,22	.319	5+186	5.275	••089	
2:81:19.9	48	46.890	46.50	,381	5.663	5.410	•253	
12:51:23.9	49	45.210	44.77	+ .436	5.416	5.553	<u>••13/</u>	
12151:27.8	50	43.540	43.08	,453	5.416	5.679	**263	
12161131.7	51	41.860	41.45	.407	5+416	5.795	••379	
12151135.4	52	40.310	39.90	.408	5+284	5+854	••570	
12151139.4	53	38.690	38.33	.360	5+609	5.902	••293	
12181149.5	54	37.100	36.71	, 383	5.751	5.914	••163	
10181147.4	55	35.450	35.07	.371	5.609	5,926	•+317	
19181151.4	56	33.830	33,39	.431	5+620	5.929	••309	
1012114	57	32.230	31.77	.456	5,762	5.939	++177	
1215115313		30.640	30.18	452	5.773	5.940	++167	
1213119715	80	29,100	28.45	.448	5,916	5.937	••021	
161761 316		27.650	27.22	. 329	5.576	5.885	++309	
121521 /11	41	24.040	26,70	.266	5.806	5+832	•+026	
12192111+0		20.000	20173		5.806	5,803	+003	
12:52:15+0	02	241080	22.00	404	5.669	5+777	++108	
12152118.9	03	23+290	21.50	408	5.883	5.767	•116	
12152:22.8	04	£1+910	21.00		6-070	5.739	• 331	
	(E	90.670	20.12	6 . 4.19				

	SCAN	BCAS	FATR	TOA	BCAS	EATP	047		
. TIME	N8 •	TBA	TBA	DIFF	DAZ	DA7	DIFE		
****		****							
12:52:34+6	67 1	7,950	17.567	.383	5.510	5.728	- 218		
12:52:38+5	68 1	6+650	16.371	.279	5,301	5.709	***08		-
12:52:42+4	69 1	5.510	15,181	.329	5.576	5.712	-+136		
12:52:46+4	70 1	4+430	14.014	.416	5.735	5.719	•016		
12:52:50+3	71 1	3+400	13.029	•371	5+768	5+711	+057		
12:52:54.2	72 1	2+480	12.158	. 322	5.532	5.716	-+184		
12:52:58.2	73 1	1.660	11.315	• 345	5+735	5.721	+014		
12:53: 2+1	74 1	0+810	10,533	.277	5+636	5.715	=+079		n
12:53: 6+0	75 1	0+070	9.798	•272	5+537	5.705	••168		
12:53: 9.9	76	9+460	9.148	•312	5.471	5.758	••287		
12:53:13.9		8+840	8.544	•296	5+466	5.817	 351		
12:53:17.8	78	8.290	8.000	.290	5+674	5.865	••191		
12:53:21.7	79	7+830	7.532	.298	5.488	5.903	++415		
12:53:25+6	80	7.370	7.080	•530	5.856	5.953	••097		
12:53:29+6	81	6.930	6.675	.255	5+361	5 5 • 991	••630	•	
12:53:33.5	82	6+480	6.238	.242	5+883	5.986	=+103		
12:53:37.4	83	6+140	5.880	.260	6+048	· 5•960	•088		
12:53:41+4	84	5.700	5.480	•550	5+872	1 5+945	=+073		
12:53:45+3	85	5+420	5.193	•227	5.933	5.929	+004		
12:53:49+2	86	5-120	4.902	.218	5+669	2+214	*+245		
12:53:53+1	87	4.860	4.659	.201	5+883	5.913	+•03Q		
12:53:57+1	88	4+670	4.422	.248	6+075	5.896	+179		
12:54: 1+0	89	4+400	4.202	•198	5•856	5.892	* *036		
12:54: 4+9	90	4+240	4.004	•536	5.691	5.866	**175		
12:54:12.8	92	1.860	3+657	£05°	5+806	5+848	••042		
12:34:10*/	93 . 05 ·	3.700	3+522	•1/8	5.999	5+876	+153		
12:34:24:0	<u>70</u>	3+480	3.319	.101	5+883	5.947	=+064		
12:54:20:5	97	3+430	3:213	•215	5+977	5.974	+003		
12:54:36.4	99	3+200		•16/	5+691	5.991	••300		
12:54:50.7	99	3.090	3.011	194	5+867	6+020	**153		
12:54.44.7	100	2.040	2:306	104	5+680	6+022	••348		
12154148.2	101	3.940	2 743	.203	6.070	6+047	•021		
12184152.1	102	2 070	2.603		5+883	6+068	••185		
12:550	104 3	2.720	2.533	•127	0+938	6+087	==149		
12:55, 10	106	2.410	2.533	+10/	0+312	6+091	+221		
12155111.8	107	-+010 -+010	2.243	• 1 3 7	6.059	6+086	-+027		
12:55:15.7	108	2.410	2.3/5	145	5+//3	6+058	++285		
12:55:19.6	109 2	2,300	2.102	108	2+867	6+067	++200		
12.30.19.0		1300	20176	•100	0+042	0.064	-+022		
						······································			

.

,

TARGET CODE: 0777 RUN 2,LCAS 045,11/9/76,ASR4		
STAN BEAS ARYS		
	TUA BCAS	ARTS DAZ
TIME NO+ TOA TOA	DIFF DAZ	DAZ DIFF
11:12: 4+8 5 18+510	-1+791	
11112:12.7 7 23.740	=2+241	
11:12:16.6 8 26.530 27.377 -	847 -2-450	-2+021 -++29
11112124+5 10 32+260 32+918 •	•1+851	+2.021 +170
11:12:28.4 11 35.110	+2+076	
11112:32-3 12 38-170	-1.741	
11112:36.2 13 41.130	-2-247	•
11:12:40:2 14 44:120 44:504 *	-384 -2-098	+2+109 +011
11:12:48.0 16 50.250 51.245 .	•995 •2•263	•2.637 •374
11112151.9 17 53.320	+2+192	
11:12:55-8 18 56-420 57.230 -	+810 +2+390	•2•373 -•017
11:12:59+7 19 59+520	•1+588	
11:13: 3.7 20 62.660 63.347 .	+687 +2+653	-2.988 -335
11:13: 7+6 21 65+760		
11:13:11.5 22 68.920	-3.071	
11:13:15.4 - 23 72:010 72:502	++92+2+889	+2.725
11:13:19+4 24 75+180	-2.494	
11113:23+3 25 78+190 78+687 *	+97 +3+005	
11113:27.2 26 81.340 81.797 .	• 457 • 2 • 653	•3•164 •511
11:13:31-2 27 84.410 84.906 .	• 496 • 3 • 505	*3+16* **341
11:13:39.0 29 90.620 91.186 .	•566 •3•895	-3.691204
11113142.9 30 93.740 94.344 .	• • • • • • • • • • • • • • • • • • • •	•3.955 •022
11113:46.9 31 96.740 94.311 2	• 429 • 3•867	•3•867 •000
DAZ MEANI +019 DAZ S+D+:	•275 N= 13	SUMe .251 SUM OF SQUARES912
	- 065 N= 12	SUME S.064 SUM OF SQUARES= 10+945

. .

TITE TOAN BCAS TOAN TOAN <thtoan< th=""> TOAN TOAN <tht< th=""><th>DAZ DIFF •••17 ••956 •264</th><th>ARTS DAZ</th><th>BCAS</th><th>404</th><th></th><th>6460</th><th></th><th></th></tht<></thtoan<>	DAZ DIFF •••17 ••956 •264	ARTS DAZ	BCAS	404		6460		
		DAZ						1.44
	••••17 ••417 • 456 • 264		2VO -	DIFF	¥D I			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-6+163			090-08	-	1:22:42.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • 1 / • ਦ 56 • • 26 •		8E#•9=		4 1 1 1 1 1 1	046.8/	* u n c	1:20:22:11
	405 • - 23 •	01+00+	550.0a) ()	
	• 237						22	
	• 237		260.44				¦ }€	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•237	r1/0C+			00000			
	/52.		666.4.			004460		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		981.00	の キの・ナ =		101.00		-4 (7 -3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••115	+83+	646+4+		040*040	000 - 200		1:23:24=2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	050+-	612.44	191.44		7 = 7 = = 0	000.00	ŋ. ≢.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••132	-4.746	-4.878	124.1	63.497	63+070	* •	1:23:22.1
11221543 47 58+50 58-80 77-80 58-80 57-80 58-80 77-80 58-80 77-80 58-80 77-80 59-80 <th< td=""><td>0461</td><td>-4+307</td><td>=3•367</td><td>+926+</td><td>+1+°09</td><td>60-030</td><td>0</td><td>5165:EZ:I</td></th<>	0461	-4+307	=3•367	+926+	+1+°09	60-030	0	5165:EZ:I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- • 665	64044+	-4.708	420	58.870	58.450	47	1:23:43.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65454		567.040	+9+**	A04 - 40	046.95	-	1:23:47.6
1123159.6 51 5_{10} $5_$			+2			55.490	64	1:23:51.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	684.**	e4.043	-++532	••367	54,367	34=000	05	1:23:55:6
11241 314 61910 51431 6131 64.307 11241 53 916000 91.9460 49.123 64.31 64.307 11241 51 48.140 49.123 64.31 64.37 64.323 64.307 11241 55 45.660 47.133 64.74 64.74 64.74 11241 50 66.7 64.74 64.74 64.746 64.746 11241 50 56.67 44.175 $6.37.56$ 46.67 64.746 64.746 11241 51.940 37.560 37.560 37.560 37.560 37.560 37.560 37.560 37.560 37.560 37.560 37.560 37.76 37.61 37.76 37.61			169-4-			·52•540	51	1:23:59.5
1124117.3 53 49.600 49.948 $\bullet.348$ $\bullet.213$ $\bullet.3030$ 1124115.2 55 46.670 44.175 $\bullet.348$ $\bullet.4872$ $\bullet.4872$ 1124115.2 55 45.230 44.175 $\bullet.375$ $\bullet.41872$ $\bullet.41872$ 1124155.0 57 45.230 44.175 $\bullet.375$ $\bullet.41872$ $\bullet.41872$ 1124155.0 57 45.730 44.175 $\bullet.375$ $\bullet.41872$ $\bullet.41872$ 1124155.0 57 43.8950 $\bullet.4137$ $\bullet.41202$ $\bullet.41203$ $\bullet.41872$ 1124155.0 59 41.040 37.557 $\bullet.3750$ 35.950 $\bullet.4130$ $\bullet.3163$ 1124155.6 61 34.520 35.950 37.55 $\bullet.4129$ $\bullet.3161$ 1124156.6 64 31.530 27.65 35.520 35.520 35.52 34.619 1124156.6 64 31.530 27.625 31.650 -41.279 31.619 11281574.4 65 64.742 $e.108$ $e.108$ $e.123$ 31.610 <	• • 206	105 apa	515.4*	165.*	164 15	201010	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+60 •	-4.307	• • • 213	- 348	49.948	49.600	53	1:24: 7.3
1124:115.2 55 46.660 47.133 473 $.4.1372$ 4922 1124:120.1 50 45.230 44.175 375 41666 4.746 1124:120.0 57 45.230 44.175 375 41666 4.746 1124:120.0 57 42.430 38.950 710 7286 7466 1124:126.6 62 36.900 37.567 710 7286 716 1124:126.6 63 36.900 37.567 667 4202 712 1124:126.6 64 710 7266 7202 729 712 1124:126.6 64 700 730 729 729 712 1124:126.7 70 26.120 799 799 720 709 712 1124:126.7 70 26.120 27.122 799 720 791 720 712 1125:121.9 71 27.429 792 796 79	190 • •	• • • 570	169.4.	+8E**	+2G*8+	0+1-8+	+ Ω	E.11:+2:1
11221:30.0 55 43.800 44.175 375 64.166 $.4.746$ 1124:120.0 57 43.800 44.175 375 376 3766 746 1124:120.0 59 41.040 37.557 375 3162 746 746 1124:120.0 59 740 37.557 740 7430 743 1124:120.5 54 7430 7430 7430 7430 719 1124:120.5 54 7430 7430 7430 7430 7254 1124:120.5 54 7430 7430 7132 729 3179 1124:150.5 6 7120 720 720 720 720 1125:120.5 7 720 765 760 760 779 1125:120.7 7 752 752 752 765 779 1125:120.7 7 752 762 762 762 762 1125:120.	• 050	=4,922	- 4 • 872	473	47.133	46-660	55	1:24:15.2
11241230 57 43.800 44.175 $\bullet.375$ $\bullet.4166$ $\bullet.746$ 11241260 59 41.040 38.950 $\bullet.710$ -3.826 $\bullet.0145$ 11241260 52 41.040 38.950 $\bullet.710$ -4.256 $\bullet.0445$ 11241766 62 36.900 35.950 $\bullet.710$ -4.226 $\bullet.0425$ 1124156.6 64 34.220 35.950 $\bullet.430$ $\bullet.4226$ $\bullet.0425$ 1124156.3 64 34.220 35.950 $\bullet.430$ $\bullet.4279$ $\bullet.0425$ 1124156.3 66 31.530 29.255 3.627 $\bullet.2379$ $\bullet.3179$ 1125124.9 70 26.220 27.028 $\bullet.806$ $\bullet.2379$ $\bullet.2379$ 1125124.9 70 26.220 27.028 $\bullet.932$ $\bullet.729$ $\bullet.2379$ 1125124.9 70 26.220 27.628 $\bullet.936$ $\bullet.2370$ $\bullet.2517$ 1125124.9 70 26.220 27.429 $\bullet.4120$ $\bullet.23.651$ $\bullet.6164$			+5+054			45+230	96	1:24:19.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 280	-4.746	-4-466	375	44.175	43.800	57	1:24:23.0
1122130.9 59 41.040 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.920 37.920 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.950 37.920 37.950 37.920 37.920 37.950 37.920 37.950 37.920			• • 158			42+430	86	6.92:45:1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-3,983			41.040	59	1:24:30.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E02 • •	540+4=	-4-246	nt/**	096.95	38=2#0	0	1.85:45:1
1122150-5 64 35.520 35.520 35.520 35.520 35.520 35.520 35.625 35.625 35.754 37.75 1122150-5 66 31.530 29.255 3.625 3.625 35.754 63.775 1122150-5 66 31.530 29.255 3.625 3.625 35.74 63.775 1125151-0 70 20.100 27.028 3.657 35.657 31.650 63.755 1125121-0 70 20.120 27.028 038 0.6175 0.31.650 1125121-0 71 71 21.210 25.756 032 0.4125 1125123-0 7 7 21.210 25.142 932 0.4129 1125123-0 7 7 21.210 25.142 932 0.4129 1125123-0 7 7 12.910 18.355 943 0.41.202 1125123-0 7 7 12.910 18.355 953 0.41.202 1125123-0 7 18.355 963 963 0.41.202 1125123-1 7 18.355 963 0.41.202 1125123-3 80 19.955 963 0.41.219	• 017	•4•219	-4-202	••667	37 • 567	36+900	62	1:24:42.6
112815065 64 $34\cdot220$ -3.774 -3.774 112815843 65 $31\cdot320$ $29\cdot255$ 3.62^2 -5.048 -3.779 112815843 65 $31\cdot530$ $29\cdot255$ 3.62^3 -5.048 -3.779 -3.779 112815843 66 $31\cdot530$ $29\cdot250$ $31\cdot562$ -5.048 -3.679 -3.679 11281179 71 $26\cdot220$ $27\cdot028$ 793 -4.6279 -3.6779 112512948 73 $26\cdot220$ $27\cdot028$ 7929 -3.4219 -3.6779 112512948 73 $22\cdot430$ 25.7769 7929 -3.621 -3.6179 112512948 73 $22\cdot430$ 25.7769 7922 -3.612 -3.617 112512946 74 21.20 22.1442 -9.922 -4.4502 -4.219 -4.219 112512940 76 18.950 18.355 -4455 -4.508 -4.6307 112512940 77 16.930 9.792 -4.450 -4.62	+28	82*°E*	-+•Z22	064.4	056.65	029+920	63	9*9+1+2:I
1128159+** 55 34.580 29.625 3.623 9.9179 1128150+** 6 31.530 29.407 30.308 -5.048 9.3155 1128151+* 70 20.10 30.308 -5.028 -5.048 9.3155 1128151+* 70 26.220 27.028 -8.08 -5.179 -3.255 11285121+9 72 26.220 27.028 -8.08 -9.125 -3.179 11285121-9 72 23.640 24.479 -7.79 -3.691 -9.617 11285121-9 73 23.640 24.429 -7.93 -3.691 -9.616 11285121-9 74 21.210 22.142 -9.93 -9.62 -9.616 11285121-9 74 21.210 23.619 -7.93 -9.62 -9.616 11285129-6 76 18.950 18.950 -9.84 -4.316 -9.36 11285131-6 76 18.950 18.950 -9.963 -4.219 -9.612 11285131-6 76 18.950 19.953 -4.429 -4.219 11285131-6 78 18.950 19.953 -4.429 -4.219 11285131-7 78 19.953 -4.459 -4.4219 </td <td></td> <td></td> <td>-3-774</td> <td></td> <td></td> <td>34.220</td> <td>64 6</td> <td>1:24:50.5</td>			-3-774			34.220	64 6	1:24:50.5
11221504.4 00 31,530 31,500 <td>046.</td> <td>•3•779</td> <td>524.20</td> <td>c29*E</td> <td>662 • 62</td> <td>32•880</td> <td></td> <td></td>	046.	•3•779	524.20	c29*E	662 • 62	32•880		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8+0+C+			050-15	8	F+9c:+2:1
112511140 70 260×20 $710 \times 250 \times 210$ 25769 -6429 -3106 11251210 71 254070 257569 -706 -31661 -3179 11251210 72 23604 -700 254070 257569 -706 -31661 -3167 11251210 72 23620 24142 -792 -31651 -31657 112512306 73 22142 -9322 -9122 -4126 -4126 11251306 75 201020 22142 -9126 -4136 -4136 11251306 75 18.950 19.796 -445 -4.504 -4.219 1125149.4 79 17.910 18.355 -445 -4.504 -4.219 1125149.4 79 15.929 -6061 -4.356 -4.219 1125153.3 80 14.990 15.953 -963 -4.356 -4.219	E/8.4	-3+255	S21 • # •			30.170	òi	
112511/0 71 23.690 23.692 769 766 -3.691 1125121.9 72 23.680 23.234 762 -3.691 -3.691 112512.9 73 22.430 23.236 23.236 -3.691 -3.691 112512.9 74 21.210 22.142 932 -4.202 -3.691 112513.0 74 21.210 22.142 932 -4.504 -4.202 112513.0 7 18.950 18.955 846 -4.504 -3.691 112513.0 7 17.910 18.355 445 -4.554 -3.691 1125140.4 7 17.910 18.355 445 -4.556 -4.219 1125140.4 7 15.929 963 -6.061 -4.256 -4.219 1125153.3 80 14.990 15.953 963 -4.356 -4.219 1125153.3 80 14.990 15.953 963 -4.215 -4.219	••675	-3.604	-4.279	••808	27+028	26+220	02	1:25:14.0
1125125*8 /2 23+680 24+42 */62 93.661 1125125*8 73 22.430 23.236 *9.806 •3.950 •2.451 1125125*6 74 21.210 22.430 23.236 *9.912 •4.202 •4.219 1125125*6 75 20.020 20.932 •9.912 •4.136 •4.207 1125514*5*4 76 18.355 •.445 •4.136 •4.207 11255145*4 79 15.920 9.929 6.061 •4.256 •4.219 1125519*3 80 14.990 15.953 •.963 •4.256 •4.131	ale.	6//184	194 * 2 *	66/44	69/102	24•970	:	K•/1:52:1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 005	+3+691	• 3 • 686	- 762	24.442	23+680	72	1:25:21.9
11:2:1:5:3:0 7 2:0:020 2:0:32 0.932 0.915 0.136 0.021 11:2:5:3:0 7 10:020 20:032 0.916 0.4136 0.4.219 11:2:5:3:0 7 18:350 19.796 0.845 0.4.504 0.4.219 11:2:5:4:0 7 17:910 18:355 0.445 0.4.508 0.3.091 11:2:5:4:0 7 16:030 19.796 0.445 0.4.508 0.3.091 11:2:5:4:0 7 15:929 0.061 0.4.356 0.4.219 11:2:5:53:3 80 14.990 15.953 0.963 0.4.356 0.4.219	063	199°Ea	056+6+	909**	23.230	22+430	2	1:25:25.8
1:25:33.0 /3 20.020 20-322 •.912 •.136 •4.219 1:25:37.6 76 18.950 19.796 •.846 •4.598 •4.307 1:25:41.5 77 17.910 18.355 •.445 •4.598 •3.691 1:25:45.4 78 16.930 9.929 •.461 •4.356 •4.219 1:25:45.3 80 14.990 15.953 •.963 •4.356 •4.131	10.	-4.219	- + • 202	555	22 1 4 2	21.210	74	1.6216211
1125147.6 76 18.950 19.96 •.846 •4.504 •4.307 1125141.5 77 17.910 18.355 •.445 •4.598 •3.691 1125149.4 78 16.930 9.929 6.061 •4.336 •4.219 1125153.3 80 14.990 15.953 •.963 •4.356 •4.231	580 ·	612.4+	921-4-	215 • •	20.932	020+02	51	0.55:33:1
1125141.0 7/ 1/0910 18.355 •.440 •4.098 •3.691 1125149.4 79 16.930 9.929 6.061 •4.356 •4.219 1125149.4 79 15.990 15.953 •.963 •4.356 •4.219 1125153.3 80 14.990 15.953 •.963	197	-4.307	- + - 20 +	- 24D	19•796	18.950	92	1:25:37.6
.1:25:45.4 78 16.930 9.929 6.061 -6.707 -4.219 1:25:49.4 79 15.990 9.929 6.061 -4.356 -4.219 1:25:53.3 80 14.990 15.953963 -4.356 -4.131		160.6.	865+#=	0+++=	16.355	016-/1		c•1+192:1
1:25:53:3 80 14.990 15.9539634.3564.131			+5+707			16+930	78	1:25:45.4
1:25:53-3 80 14+390 15+953 ++963 +4,356 +4,131	LE1	612+#+	966.4.	190 19	626 6	066•st	64	4-64162:I
	•• 225	151+++	• • • 356		10+953	14.990	80	E+Ec:c2:11
	6644	612040	+21 · E =	195**	166.41	nto•+t	-11	2.14:02:1
11:26: 1.2 82 13:090 6:918 6:172 -4:175 -3:955	220	-3-955	-4.175	6.172	6.918	13•090	82	1:26: 1.2
			108.5			12+200	83	1:50: 2•1

-

F-118

A/DAZ ERRO	ANALYS	IS PROGRAM			D	ATE . NO DA	ATE + PAGE	0004
ARGET CODE:	0777	RUN 3,LCAS	045,11/9/76,	SR4				
	SCAN	BCAS	ÄR†S	TOA	BCAS	ARTS	DAZ	
TIME	N8 •	T8A	TOA	DIFF	DAZ	DAZ	DIFF	
126: 9+0	84	11+400			•3•752			
126112+9	85	10+540			• 4 • 329			
:26:36.5	91	7.020	7.804	784	-3-983	-4-043	• 060	
+26140+4	92	6.590	7.113	• • 523	•4•120	-3,691	• • 429	
:26:48.3	94	5+710	5,992	••282	-3+400	-3-164	••236	
127: 11	97	4+700	5.088	#:388	-3.389	-3.428	+039	
:27: 4+0	98	4+430	5.108	-,678	=3+444	-3.779	• 335	
127:15+8	101	31770	4,078	++ <u>308</u>	-3.593	+3++52		
:27:19+7	102	3+640	3.870	230	-4+021	-3.164	++857	
127:23+6	193	3+520	3.779	•• 2 5 9	•3•642	•3:428		
127:27.6	104	3+340	3.599	.259	-4+114	•3.428	••686	
:27:31.5	-165	3+280		+.555	+3+631	+3+604	-=027	
127:35.4	106	3+130	3.312	•.182	-3,323	-3.516	•193	
127:3913	107	3+020	3.169	++145	•3•593	+3,516		
:27;43•3	108	2+870	•671	2.199	-3-686	•3+340	-•346	
:27:47.2	-109	2:750	2.821	**071		*3.252	++945	
127:51+1	110	2+620	2.766	146	-4+005	•3•428	577	
127:59+0	-112	2+430	2.568	···138	-3-829	+3+604	**225	
:28; 2+9	113	2.360	2.392	-,032	• 4 • 252	-3.340	••912	
128: 6+8	114	2+180	5+531	+.051	•3•686	=3+076	-+610	
:28:10.8	115	2.100	2.152	052	-3.208	-3.076	132	
128:14+7	116	2+010	.398	1.612	-3+609	+2+900	++709	
:28:22.5	118	1+880	2.118	• .238	+3+571	-3.691	•120	
128126.5	119	1+750	1.951	+,201	-3.527	+3+340	=+187	
:28:34.3	121	1+710	.1.726	•.016	-3+505	+2.900	••605	
158138+5	122	1+640	1:599	+041	+3+378	•2.549	••829	
:28:42.2	123	1.550	1.731	++181	-3.395	-3.340	••055	
128:46+1	124	1.500	1.598	+.098	•3•274	-2.988	• • 286	
:28:50.1	125	1+560	1.534	.026	-3.340	•2.900	440	
128:54.0	126	1.420	1.530	**110	•3•318	=3,076	=+242	
:28:57.9	127	1+410			•3•318			
1291 1+8	128	1.420	• 480	•940	-3+955	+3+604	++318	
DAZ HEAN		**212	DAZ SODI	+398	N# 62 SU	M=	13.163 SUM OF S	GUARES 12.44
TOA MEANI		••016	TBA S+D+1	1.336	N# 62 SU	M=	••963 SUM OF S	QUARES# 108+847

1 <u>9/•22</u> 9/9•9	•5•00 204 95 200 452 • •2•++2 204 95 200 452 •		-WU2 65 26 SUM=	=N =N	926• 124•	:•0•5 ZVQ	++510	DAZ MEAN:
	514++	914.9-	828		296	780.001	021+66	64 E*EE:9E:
	019.4	769 9		•9=	<u> </u>	159 56		** ****
	090	£12*5*	244		510-	576-26	096-26	27 5-92.96.
		850-9-	286		09/	059*06	000109	Ge 01/71961
			6/3	. 9-			05500	
	C01	00044-	640		04010	00110/	0974//	24 046 1961
	90110	833-4-	C74		078	001.85	017.4/	
		C+0144	240		101+2	646190	000+1/	
	673	199+54	001		0/0**	070 00	056 • / 9	
	687*-	178 6-			UZ8	<u>V68.87</u>	016++9	SF 2+0c1CF1
			001	•••			09/*19	/F 7*94:GE:
	**0.*=	CG6+F.	664	• • •	151+2	20+093	008+89	96 5+2+:96:
	680 •	105.44+	+22	***	926 * -	810.95	069.99	GF #+8F:GE:
	6+0+	E+0+++	#6 6	15-	692**	686.29	25+130	4E G+#E:GE:
	ETRe=	+3*#Se	1+7	• 17 m	991	816.65	094.65	32:30+2 23
	9/9+-	644 °E-	554	***	- 583	621.14	065.04	0E 8+81:5E:
	••033	640.44	940	10.90	-1396	38+366	046.48	67 814185:
	181+-	-4.219	00+	• * *	105**	185*SE	080.95	32 6+01:5E:
	5#1++	198 · E .	910	• • •	15+**	35* 691	35+5#0	47
	+12++	E+0++-	292	! * */ =	149**	52*337	56.630	92 1.6g:+E:
		*3*585	081		<u>+9+**</u>	<u> </u>	53* 330	42 - 2155:45:
	+09 • •	+09·E-	803	!•+=	+6G*=	\$5°02¢	51•#60	:3#12I+3 53
	-+526	169*8=		• 2 • .	<u>564*-</u>	589*61	068+\$1	:3#:#1+3 SS
	-• 3 53	886,5-	116	5*E=	*95* -	17.124	095+91	13 4.54:45:
			61/	• 5 •			01:0.01	
	691+	076*6*	181	*E*	£77.	13*503	15•#30	61 9+SE:+E:
			64/	•==			059±01	81 9+12:46:
	981 •	169*8+	202	i*E•	£19*-	€SE*∠	0+2•9	SI 6.61:4E:
	• 358	-996.26-		•E•	<u></u> <u></u>	<u>\$65*9</u>	0#8*5	\$1 6* <u>6</u> 1:*E:
	• 552	622°E-	+55	•E+	-•ess	5+7+2	2.120	:3#115+D I3
	<u> </u>	6/1*8*	511	• E =	809	801.5	005.**	<u>-31 1+8 1+6 1</u>
	691•	h91°€•	500	-3+(-•532	4*301	040 • •	11 2+4 :46:
				•		<u> </u>		
	DIFF	ZVQ	ZAC]	711C	AUT	ABT	• GN 3HI1
	Z¥0	-2TAA	SY:	18		ETAA	_5¥38	NYJS

.

•

,

 820 • 692 • 2410 ZV0	244 280°6- 264°6- 204°6- 204°6-	-2.00# -3.00# -3.052 -3.052 -2.53 -2	Ae1 1410 180, - 183, -	TEE • 96	64*150 64*150 62*620 63*620 64*680 19¥ 80¥ 80¥ 80¥	50 50 13 14 15 15 12 12 50 70 70	6.8519411 6.86154111 0.55154111 1.15154111 1.44154111 3W11
 ••523 • 058 • 593	ES0*6- 26**6-		708 708	166	071°46 07°150 05°620 05°620 05°620 08°86	50 50 16 12 12 12	6.85:94:11 6.85:54:11 0.55:54:11 1.15:54:11 1.24:54:11 3.11
 • • 523 • 058 692 •	564.6- 550.6-	+00°2- 2220+6- 520*6- 520*6- 5234 -00*523	708 183	155.426 784.66	089*86	50 50 13 14 15 12	6.85:54:11 0.55:54:11 1.15:54:11 1.44:54:11
 £52.++	£20*6*	+00•/- 2//•6- 520•6- EE8•8-	189	166.96	071*+6 021*+6 02**150 02**20	50 50 18 18	6•85:54:11 6•85:54:11 0•55:54:11 I•I <u>6:54:11</u>
 523	<u>\$41+8=</u>	+00 · L - 2// •6-	189	166.96			6+85154111 6+85154111 0+55154111
523	<u></u>	+CO • L -			071+#6 071+#6	50	6-89:97:11
-+523	<u>+/1•8-</u>	+COA/-			021066	~~~	2040:0011
		/24+9.	/05-2	E60*06	004-56	t¢	ATCATT
LLJ++	866•2-	570+8-	5*235	845.88	080-16	55	219 197111
 		265•/-					
• CSS	+EL•L•	517•7-	576,52	894*58	041+88	54	9+41:94:11
 	949+/+	+0S+/-	949+2	+E6*E8	019+98		<u>5+81194:11</u>
500	699 . 7.	495°L=	2•751	85*333	051 • 58	92	11:40:52.4
 -+058		<u>(+1+1</u>	5856	+18+08	019+58		++05:04:11
542 •	979°2-	+0G•Z•	2.820	076.07	61.58	85	E+0E:94:11
 <u>/81</u> +	562 · LA	801.4/*	5*534		064+08	67	
	-	2E# • L =			79+330	30	1+8E194111
		<u> </u>	+ 951	105*84	088+11		0+2+19+111
61E ···	016.7.	•8•553	E05*=	£66*92	06+•91	35	0*9#19#111
121+	09618-	622 • 8 •	£##**	ESE*6/	011.67	- 23	<u>6+6+19+:11</u>
251+-	GZG*8+	199.8.	9/E**	940.47	002 · EZ	7E	8*89194:11
CC()++	cZG*8-	085 • 8 •	982**	899.24	72+280	SE	1.144:94:11
 FC2++	980+8-	6EE • 8 •	SET * -	946.04	048.07	96	L+1 :24:11
		828 . 8 .			026+49	38	L.1219E:6
 		696+8+			04++99	68	9:52:96:6
		914.8-			020.49	0+	9 • 62 : 9E : 6
 		45/ 49=			06**59	1+	G+EF 19E16
		924-2-			043.09	25	++/c:9E:6
 		985-2-			060*63	<u></u>	CATA:9616
		+2.52+			020+29	57	2+07+7C10
 		E8E•8•			070-44		746417616
		929•2 -			024.42	24	0-25-92-0
 825++	<u></u>	1/4•/-	E/9*•	<u> </u>	069-29		<u><u><u>N</u></u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u>N</u><u></u></u>
		867 • 9 •			084-15	67	2"65127111
 E0E+	89/+9=	59++9+		<u>86<u>9</u>05</u>	098*6*	0 <u>s</u>	91961/11
	-	6***2-			006*9*	52	G+4 184111
 121+-	611+4+	-1.540	570	099*5*	066+5+	23	++8 18+1II
+150	958*9*	621.9-	+6I*-	**1***	096+24	† 5	E+SI:84:11
842	646+9+	161+/-	76+**	255 • 1+	006+0+	95	11:#R150+5
 C/200	546+9+	+1+518	sZG**	394468	0E++6E	49	11:48154+1
10++-	102.14	809•/-	05/**	38+980		85	11:#8:58+0
 7744	1/4*/*	660+/-	076**	0E+*/E	015+92	65	6+1E:84:11
990**	1604/-	CCQ+Q=	098**	0/8*9E	010-56	09	8+56184:11
	1504/4	980 • / =	+12**	*58*EE	33+9+0	19	8+62:84:11
700	633-4-	C0++/+	572 TGC • +	11/•26	35+100	29	/*E+:R+:II
 				900+16	09/005	50	9+/+:8+:11
	COC 4 / 4	0694/0	0/0**	921.05	53+420	+9	G+IC:84:11

		890.54			5+6+0		1•12 <u>9</u>
		E99+L-			026+5	115	2S: •0
		<u></u>			3+0+0	111	1+96119
		114+9-			3+150	011	212215
• 058	89/ +9+	072.90	-*519	69+*E	3•130	601	E:8+115
011.	894 • 9 •	899+9-	£52°+	E99*E	01E+E	801	E***:15
		19/ 49+			00+•E	201	++0+:1S
29E •	+0G•9+	L#1•9-	801	819*E	015°E	901	S*96115
ZEI+*	690*9×	961+9=	6//•1	16/*1	3+210	CÔT	G+26116
110+-	089*9*	169+9+	661**	606°E	012 ·E	+0 I	9+82:15
269++	0+2+9	2/8.9-	••033	F/2*F	3*8#0	E01	1.42:19
		969 • 9 •	• •		056*6	105	8.02115
		00++9-			011.4	101	8191115
		-2•922			02E+#	COT	61:15-6
555	#90*9 =	609+9-	090	085.44	06+++	66	0+6 115
995 • -	688*9+	151.9=	661*	140.4	0+9++	86	T+G ITC
121+-	+90*9+	581-9-	545.12	505+2	098++	16	1+1 110
		611.9-			050+5	96	21/0:06
10+	40G*9+	506+9-	/06**	/2c+c	022.0	56	S+6c:06
660+-	91+*9+	StG+9=	T/2*=	10/+6	05++6		E+6+100
GTT++	+06+9+	619+9+	*/2**	+9C+C	069+6	"O	2-84-09
-+033	092.94	6/2+9+	+00+2	3+039	02615	- 26	C+1+10C
	••••	972+9-	468 5	, co c	040+9	06	3-14:03
651+*	269+9+	19/ 49-	094+2	086*5	00519	0	/ #67100
/62•	269+9+	562.94	591 • F	/07**	066.1	00	212212
190++	975+9+	69+393	<u></u>	1/104	05/4/		0.17100
		0/6+9+	217 2	221.4	002-2	28	8-12-09
990	-9++10	28++9+	/551=	100+6	07/46		6-21-09
	089+9+	605+9+		69/16	00746	58	1.01.09
000 •	91++9+	91++9-	745 **	227+01	05/16		1101:05
295	09/+9-	C0++9+	C00**	CON 11	062-0	28	7-1 100
6241-	261+9+	190.00			085 +07		
59715	60C+9e	99/40-	731-	421-11	020411	18	5.82.04
951	075+0.	970+84	07510	000171	0/7471		<u></u>
2514	00/+0-	06040-	302.4	869-21	012.00	62	1.02:04
14744	09919-	176195	LTL		000000	- 96	5194:67
(20.	014804	606400	717-9	769-6	096*61	22	9 6 7 6 7
171++	02510.	644 1 0a			000407	94	-2-86-64
	400+9e	846404	277 -	LGL 91	088-91	54	2"7E-67
769	116950	69948-	886-8	701.061			N+0E:64
990	PUC - 04	0/0+/=	170-	101-61	071 61	22	0.53.64
990.		150+0-		<u>EE5*91</u>			0.61.64
1674	6114/-	63040-	619**	651-55	042415	02	1.51.64
2/0.0	511.64			- 882 62	DEX 22	69	2:11:61:
67010	100.14	000-2-	209-6	59.05	080-45	89	5.7 :04:
110.	<u>ERE'4</u>		<u> </u>	<u> </u>	56.680	68	<u>++6618</u>
110*	124-24	07772-	758	216.85	060+85	59	5+55:84:
			••••		****		••••
10	270	270	110	AOT	AUT	• 0N	3mi1
	CINA C	SVJM	401	C L N M	รัฐวุณิ	NUMBE	

S RUN 5.LCAS 045.11/ 8 RUN 5.LCAS 045.11/ 104 5.LCAS 045.11/ 104 2.480 3.1 2.480 2.4 2.480 2.4 2.490 2.4 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000 2	R ANALYSIS PRESERAN 5077 SLCAS 045.11/ SCAN 5077 NB. 76A 7 113 2.870 3.1 114 2.780 1.6 119 2.480 2.4 119 2.440 2.5 120 2.390 2.5 120 2.40 2.5 120 2.6 120 2.6 120 2.6 120 2.6 120 2.6 120 2.6	19/76/ASR4	TS TOA BCAS ARTS DAZ	BA DIFF DAZ DAF		+20-554 +00-554	-08 1.082 -6.196 -6.410 -6.0		•64 •016 •5∗900 •6•064 •164	htt	166 • 124 • • 64.575 • 5 .889 • • 686	, 293 № 69 SUM= +4.243 SUM 0F SQUARES= 6:091 1.676 № 69 SUM= 44.801 SUM 0F SQUARES= 220-209
	R ANALYST SCAT SCAT NB. NB. 111 118 118 118 118 118 118 118 118 11	S PRB3RAM RUN 5,LCAS 045,11/5	BCAS ARI	TBA TE	2.870 3.12	2.780	2.690 1.6(2.630	2.480 2.46	2.3	2.390 2.26	DAZ S.D.: 144 S.D.:

F-123

-

985.7	-7.841 SUM OF SOUARES		*HUS 8	3E	•N	168.	: • Q • S ZYQ	••506		DAZ MEAN
		764464		151		/65*•	409*66	051+66	+9	11120115•0
	676* /07.ee	CC046-								0+9 166111_
	£01	130 0	5	833	8.			93+280	29	I++ :65:II
	661+	-/64+8-		512			<u> </u>	- 066+18	09	<u></u>
	+92.0	/24.8=	1	02		886**	874.28	064+48	69	11128125*3
		-264.9-		, t <u>e</u> r		+82 ****				<u>+*8+18G1TT</u>
	• 358	592+8+	•	1534	8-	+09**	4EE*6L	067+87	2 9	G+44185111
		016+4-		3861	1 <u>/ •</u>	\0+!=		068454	- 95	9404:95:11
			e	5219	-8-			096+27	SS	9496185111
		016.4-		182	<u>-8-</u>		881.07			
	29E • -	124"2+	5	358,	-2-	- • 265	567.73	67.200	55	8.85:82:11
		056.8-		-		914.		000010		C+0210C111
	4E4	4EL•L=	E	391	8-	764	278-17	085-13	19	0*42+53+++
		<u>-980+8=</u>		15			E10*55	097785		T+CT10C1TT
	204	558.7-	6	522	8-	597	900-98	073-35	57	7+4 1961IT
	0\$\$	056.8*		116	<u>/</u> •	844		0004/5	0.5	5+1 1961IT
				1961	8			062+++	64	++/c1/G111
				201		166.1.0	/2++2+	06++1+	**	C+Ect/GtIT
	814	#CZ-Z-		5999 511	·	760	LCT CT	008+85	£4	G+6+1/G111
	0364			70.6		/59**	31.027	361190	24	9.54125111
	804.	/07+/*		100	2-	EC#**	585+15	30+630	.0.	11:21:31+9
	1674	1/49/4		181	1/-	//***	416*82	58.440	66	8.EE:72:11
	190.	585.4/		275		C84**	50++92	52+350		<u>5+67:46:11</u>
	906++	120.74		333	-7-	••552	53*802	53+280	28	11:22:56+0
		150.14		10	·	/08		51+590	- 39	1+22:/6:11
	110+	120+2-	č	osc	•Z•	Ž86*•	786+71	050+21	7E	2+41:72:11
	<u>/61++</u>	- 989+9-		(18	9		—— 868*51 —	12*550		E+01+25+11
	2E1+	558+9-	5	BIL	•9-	۲۵۵۰۰	74.277	13+610	35	E+9 125111
	019++	291.19-	;	292 -	-9				-31	- 4+2 1/2111
	948	+90°9 −	9	316	•9•	• 130	047.01	019+01	30	G*8G19G111
				185				00540		0400190111
	• 503	856.8-	5	521	• 9 •	909	986.8	085-8	86	/*05/05/11
		10815		351	L9=	641		0,040		0.74105111
	EZE•	251.9.		644	<u> </u>	917-	780°Z	006+0	76	C19019C+11
		688154		946 0/0		120	520+C	025.46	+2	11:20:34+2
	52	929 9		628	- <u>-</u>	56014	59615	0/946	52	1112013140
		77644-	t	376 -	• C •	F01"	/62**	00***	22	1+42195111
	1000°S-	/FG+G=		00+	• G •	607	612**	0/0++		11:20:53+1
			\	h29	•G=			0E5+E	61	E+ST:95:II
	0/1++	96019-		892	•ā-	800**	862+6	3+520	81	++TT:90:TT
	906+-	++513		152	• 5 -	1621	5.729	3+050	21	4•Z 195:11
	019++	612***		280	•		195+2	2+850	<u>91</u>	11:201 3:2
	6	566.44-		5EE	• 5 •	664*1	188.	2+680	91	9•65:55:II
					•					
	DIFF	z∀ɑ		ZVQ		3 4IQ	AÐT	AOT	• 6 N	IIME
	7¥0	VK12		SYO(A	AD1	SLNY	<u>8C¥38</u>	NYOS	

					016+91		
		240.0I=			008+71	4L	9•1
		684+6*		<u> 994*61</u>	098+81	<u>\$4</u>	
- 330	1.00	160.01-			078.01	27	Z*8
1294	e7/+01+	201+01-			50*950		8.6
107	C92+01+	+0++01-	+19*-	+76.55	55+060	02	6+9
101	110001	264+01+	846**	841+42	53+500	69	_6+1
	CG++01+	+10+390	9/ ***	9+8+42	24+370	89	0•8
660.	034-01-	080+11-			095+62		1
	4600Te	629+01+	**568	8+0•7 <u>5</u>	087+25	99	٠5
580	243-05-	18##01#		58+139	58+050		5.4
-692-	7014110	97/+01+	221+1+	345.0E	59 •550	79	E•3
464.	271-11-	CF9+01-			30.450	<u> </u>	- + • 5
-000	967-01	649.014	C9/**	35* + 62	002 • 1 E	29	+
640.	868-01-	600-01-	/07.4	/91+FE	35+390	19	<u></u>
<u> </u>	<u>S61*01#</u>	/61464			34.230	09	9•9
		607401a	F2/ **	20*533	045.55		
11044	<u>561*UI#</u>		14648	195 1/5	36.920	85	8 • 1
550 * *	478°6°	668-6-	CEE	CTO+OF	097+95		8
	95/-6			290.00	0E4 *6E	95	6.0
542.	020.01.	877.6	292	01414	012116	20	
	0 <u>50.</u>			186974	099+2+	+9	0+1
<u> 1</u> 94•	17E.01-	706-6-	296	203044	061+++	50	1+
	-10.283	186.6*			061+/+	15	2+
+75++	-6°635	902-01-	572.	534.04	019-54		
	10.020			997105	021+05	64	
582	26464	419-01-	971	670+15	009+19	96	<u>c •</u> /
<u></u>				/00100	090+56		
880 •	245-01-	694-01-	2078-	27/440			ـــــــ
		648-01	0710	661 • aC	066*59	64	1.
684+-	242.01+	960-11-	cot:		000+/5		<u> </u>
	877 6-				000.65	E.t	8.
		- 918-01-	000	090109			_ <u>_</u>
+64++	<u></u>			1/0129	096+19	T+	0+
591•	742.01.	SAE-01-	06010	020449	056459		
				680 10/	046+69	95	E •
708++	118-01-	819-11-	207	12011/	006+0/	GE	
<u></u>				95095/	056+F/	33	Ğ.
•530	598.11-	GEA.II-	800-	640.42	000000	- 26	
	190421-		Ed.	170161	060.00/	05	9 •
•520	-12+217	266.11-	757	TSF.PT	003-84	47	Ö.
					0+/+TR		£ •
		-12-550			072-18	07	õ.
<u></u>	+15*#80				065408	- 76	T .
_		-15+393		0.0000	036448	72	2.
	<u> </u>	<u>*15+876</u>	0/5***	063***			2.
2+9++	•15•302	72+9+7	•356	411.68	044-08	23	E
DIEE	ZAG	ZVO	DIFF	AAT	AAT	- ON	3MC
ZY0	<u>¥kt</u>		AOT		57.18		

Tree SCAR ATTS DAZ DAZ<	1.01	re+59 SUM OF SGUARES= Maitho SUM OF SGUARES=		N 56 SUM	514 •	DAZ S+D+:	••044 ••378	==	DAZ MEAN TBA MEAN
Trte No. Fr.A NTS DAZ DAZ 1116 No. Fr.A TBA DAZ DAZ DAZ 1116 No. Fr.A TBA DAZ DAZ DAZ 1119 141100 15-554 -10041 -10118 -1012 -101 1119 141100 15-554 -1004 -9153 -9553 -9153 -112 1119 111-950 12-1930 -1953 -9153 -9153 -112 1118 111900 111-950 12-1930 -1705 -9153 -112 1118 111900 111-950 111-950 -11-950 -114 -114 1118 111900 111-950 111-950 -11012 -114 -114 1118 111900 111-950 -11400 -114 -114 -114 1118 111900 111-950 -11400 -11400 -114 -114 1118 111 1111	1.01	2.460 CUM AF COULDFS=		- 41 S					
Tite Tex Aft's Dif Dif<		r 9 + 0 -	./0.8-	095+64	•120	0+/+E	3+860	116	13:16.6
Title Title Name Diff Diff Diff Diff 1116 100 <td< td=""><td></td><td>C251</td><td></td><td>291.46</td><td>042.0</td><td>811×</td><td>096*6</td><td></td><td>3112.0</td></td<>		C251		291.46	042.0	811×	096*6		3112.0
THE SCAN FCAS AFTS DAZ THE TH TH TH DAZ DAZ THE TH TH TH TH DAZ TH TH TH TH TH DAZ TH TH TH TH TH TH TH TH TH TH		-+379 	•9•224 • • • • •	-9+608	••081	4 • 161	4 • 080	E113	13: 4•B
The BCAS NTS DAZ The Web FGAS NTS DAZ The Web FGAS ARTS DAZ DAZ The Web FGAS 100413 100413 100413 100413 The 110430 15640 15454 100413 100413 100413 The 110430 110430 -10044 -100413 -00125 -003 The 110450 120560 12-935 -10042 -9573 -1142 The 110450 110425 -10042 -9573 -1142 The 110425 -10042 -9573 -1142 The 110425 -1002 -9573 -1142 The 110425 -1002 -9573 -1142 The 110425 -100125 -9573 -1142 The 9460 94925 -100125 -1142 The 9460 100425 -10045 -114		• • 603			950.	+ 1 1 +	0/1**	211	6 • 1E1
THE CCAN DECS AFTS DECS AFTS DECS DECS <thd< td=""><td></td><td>coc</td><td>9.0.6</td><td>44C=6=</td><td></td><td></td><td>4.220</td><td>111</td><td>12:56.9</td></thd<>		coc	9.0.6	44C=6=			4.220	111	12:56.9
THE CCAN ECAS AFTS DAZ DAZ<		• 0.0 e	//2.2.	40.054	£05•1	100.05	4+360	DIT	0.55121
THE SCAN BCAS ATTS DAZ DAZ THE NB THA TA DAZ DAZ DAZ THE NB THA NB TA DAZ DAZ DAZ THE NB THA 101195 TA DAZ DAZ 113315 75 15431 15011 SCAN SCAN SCAN 1013315 75 15430 15011 SCAN SCAN SCAN 1013315 75 15430 15011 SCAN SCAN SCAN 101512 78 11.350 91 7.355 91 7.229 11.26 111301 81 9400 11.495 11.0400 91.375 91.65 10.126 111301 81 9400 91 7.476 91.65 91.64 111301 81 91 7.476 91.65 91.64 91.64 111301 81 91.01.03 91.91.75			-	+0+ -6-	0.0		4.720	107	12:41.2
Tex NRT DAZ NRT DAZ DAZ <thdaz< th=""> <thdaz< th=""> <thdaz< th=""></thdaz<></thdaz<></thdaz<>	L			1/5.54			4.780	106	12:37.3
THE NIS NIS <td></td> <td>• 296</td> <td>264*6=</td> <td>-9.196</td> <td>••247</td> <td>5.497</td> <td>5.250</td> <td>103</td> <td>12:25-5</td>		• 296	264*6=	-9.196	••247	5.497	5.250	103	12:25-5
SCAN BCAS ARTS DAZ DAZ<			-9-141	-9.695	•078	5.372	8**50	102	12:21-6
TIME BCAS ARTS TBA BCAS ARTS DAZ DA		• 593	-9.053	-9 • 6 • 6	• 102	5.518	5.620	101	12:17.7
TIME BCAS ARTS TeA BCAS ARTS TeA DAZ DIFF DI 1013955 76 155910 16.954 -10.014 -100118 -10.195 -677 -				-9+492			A = NHI	-	N-B ICL
Time SCAN BCAS ARTS DAZ		076	-10.020	-10.096	••561	6.771	61410	£ 8	0.4 .4
Teal RTS DAZ DAZ <thdaz< th=""> <thdaz< th=""></thdaz<></thdaz<>				*9•750			6.670	96 96	11:58.0
TIME No. TDA No. TDA DAZ DAZ <thdaz< th=""> <thdaz< th=""></thdaz<></thdaz<>		- 385				7,326	6+960	5	1115411
TIME No. T0A T0A DAZ DAZ <thdaz< th=""> <thdaz< th=""></thdaz<></thdaz<>		• 220	-9.756	-9-536	••326	7.476	7.150	19	11:50-2
SCAN BCAS ARTS DAZ DAZ TIME NO: T0A DIFF DAZ DAZ DAZ TIME NO: T0A DIFF DAZ DAZ DAZ DAZ 10139:5 76 15:910 16:954 -1.044 -10:118 10:195 -C77 10139:5 76 15:910 16:954 -1.044 -10:118 -10:195 -C77 10139:5 78 14:190 15:649 -6.949 -9:558 -9:259 -142 10159:1 78 14:190 12:650 12:493 -1233 -9:259 -142 10159:1 81 11:495 -1205 -9:371 -9:259 -142 11:30 82 11:495 -1205 -9:371 -9:053 -632 11:18.7 86 9:670 9:053 -064 -9:053 -142 11:18.7 86 9:670 9:053 -9:053 -148 -148 <				+10+036			7.970	91	4-38-11
TIME NO: TDA TDA TDA DAZ DAZ <thdaz< th=""> <thdaz< th=""></thdaz<></thdaz<>			-10.020		- • 625		8+300	\$	- <u>5++6:11</u>
TIME SCAN BCAS ARTS DAZ DAZ TIME N0* T0A T0A DAZ DAZ DAZ DAZ DAZ DIFF DAZ DAZ DIFF DAZ DIFF DAZ DIFF DAZ DAZ DIFF DAZ				-9-987	U		8 • 660	89	11:30.5
SCAN BCAS ARTS DAZ DAZ TIME NO* T0A DIFF DAZ DIFF DAZ TIME NO* T0A T0A DIFF DAZ DIFF DAZ 10139*5 76 15.910 16.954 $\bullet 1.0044$ $\bullet 10.118$ $\bullet 10.105$ $\bullet C77$ 10139*5 76 15.910 15.654 $\bullet 1.0044$ $\bullet 10.0118$ $\bullet 10.125$ $\bullet C77$ 10147*3 78 14.160 19.651 $\bullet 59.558$ $\bullet 9.549$ $\bullet 9.5358$ $\bullet 9.229$ $\bullet 1126$ 10147*2 79 12.5560 12.936 $\bullet 3768$ $\bullet 9.229$ $\bullet 1126$ 10155*2 80 12.936 $\bullet 376$ $\bullet 9.632$ $\bullet 1126$ 10159*1*2 79 10.129 $\bullet 9.632$ $\bullet 1126$ $\bullet 1126$ 10159*2 80 12.5560 12.1935 $\bullet 1206$ $\bullet 1126$ 1113.0.7 84 10.0129 $\bullet 9.0533$ $\bullet 6322$ $\bullet 1426$			-10+195 -	-91712		63616	8+970		11:26.6
SCAN BCAS ARTS DAZ TIME V0+ T0A DIFF DAZ DAZ TIME V0+ T0A DIFF DAZ DAZ DAZ 10139+5 76 15-910 16+954 -1.044 -10-118 -10-125 -C77 10149+4 7 14+990 15-654 -1.044 -10-118 -10-195 -C77 10147-3 78 14+160 15-654 -1.044 -9.558 -9.558 -505 10151-7 78 14+160 15-654 -1.044 -9.558 -9.229 -1126 10151-7 9 19-356 -9.371 -9.229 -1142 -142 101551-2 80 11-995 -12936 -126 -142 -142 101551-2 81 11-9.550 12-183 -1142 -9.633 -142 101591 81 11-92 -1005 -9.534 -9.142 -142 101929 10-129 -101				-9.882			9+670	86	11:18•7
SCAN BCAS ATTS DAZ TIME NO+ TOA DIFF DAZ DAZ TIME NO+ TOA TOA DAZ DIFF DAZ 10139+5 76 15-910 16+954 -1.044 -10.118 -10.195 -C77 10147-3 78 14+160 15-631 -1691 -95-560 -9.056 -306 10147-3 78 14+160 19-631 -1691 -9.556 -9.056 -9.066 10155+2 80 12-560 12-936 -8.371 -9.529 -1142 10155+2 80 12-560 12-936 -8.371 -9.053 -6.052 111.3-00 12-160 12-193 -8.229 -142 -14.2 111.3-20 12-163 -8.23 -9.0553 -14.2 -14.2 111.3-20 12-10.125 -12-10.125 -10.14.2 -14.2 -14.2		• 258		+9+586	-1.005	11+495	10+30		6-01-11
TIME SCAN BCAS ARTS DAZ TIME NO+ TOA DIFF DAZ DIFF DIFF TIME NO+ TOA DIFF DAZ DIFF DIFF TOB TOA DIFF DAZ DAZ DIFF DIFF 10139+5 TO 15-910 16+954 -10-044 -10-118 -10-195 -C77 10149+3 TB 14+1690 19+681 -16-91 -9+556 -9-558 -9-568 -908 10149+2 TB 13+220 13+320 13+320 12+394 -9-558 -9+279 -1126 10159+2 80 12+356 12+394 -1673 -9+371 -9+279 -14+2 10159+2 80 12+356 -12+33 -9+371 -9+239 -14+2 10159+2 80 12+356 -12+33 -9+371 -9+239 -14+2				-10+129			11.350	82	11: 3.0
SCAN BCAS ARTS DAZ DAZ TIME NO+ TOA DIFF DAZ DAZ TIME NO+ TOA DIFF DAZ DAZ 10139+5 76 15+910 16+954 -10044 -100118 -101195 -C77 10139+5 77 14+990 15+910 16+954 -10044 -100118 -101195 -C77 10145+4 77 14+990 19+661 -6954 -10049 -9558 -308 -308 10145+2 79 13+360 13+369 -6558 -92.29 -126 10155+2 80 13-356 -376 -93.351 -9.229 -126			- 65016-	- 12+ 8-				-18	1+651011
SCAN BCAS ARTS DAZ TIME W0+ T0A DIFF DAZ DAZ TIME W0+ T0A DIFF DAZ DAZ DIFF 10139+5 76 15+910 16+954 -1044 +10+118 +10+195 -677 10147+4 7 14+990 15+681 -16044 -9+558 -308 10147-2 79 14+160 15-681 -95558 -90558 -308 101617-2 79 13-869 -6-9558 -90558 -028 -028		••142	•9•22 9	1 2•371	376	12.936	12.560	80	10:55.2
SCAN BCAS ARTS DAZ TIME V0+ T0A DAZ DAZ TIME V0+ T0A DIFF DAZ DAZ TIME V0+ T0A DIFF DAZ DAZ DIFF 10:39+5 76 15-910 16-6354 -1-044 -10-118 -10-195 -C77 10:47-3 78 14-990 19-661 -5-560 -9-665 -308 10:47-3 78 14-160 19-661 -9-5580 -308 -308			-9.229	- 550 *6=	••5#9			51	10:51-2
SCAN BCAS ARTS DAZ TIME VB* T0A DAZ DAZ DIFF DAZ DAZ DAZ DAZ DIFF DAZ DAZ DAZ DAZ DIFF DAZ DAZ DAZ DAZ DISPE T0 DAZ DAZ DAZ DI399:5 76 15:651 -1044 -10:118 -10:195 -6.77 DI0193:4 77 14:990 15:651 -6.91 -5.560 -5.058 -506				-9.558			14.160	78	10:47-3
SCAN BCAS ARTS TBA BCAS ARTS DAZ TIME NB• TBA DIFF DAZ DAZ DAZ TIME NB• TBA DIFF DAZ DAZ DIFF 10:39•5 76 15.910 16.954 -1.044 -10.118 -10.195 -C7		• 308	-9.068	-9+360	169:0	19:001	066141	2	10:+3=+
TIME SCAN BCAS ARTS TOA BCAS ARTS DAZ TIME NO+ TOA DIFF DAZ DIFF TIME *****		• C77	•10.195	+10+118	++0-1-	16.954	15.910	76	10:39.5
TIME NB+ TOA TAT TAA BCAS ARTS DAZ DAZ TIME NB+ TOA TBA DIFF DAZ DAZ DIFF								- 2223	3070
SCAN BCAS ARTS TBA BCAS ARTS DAZ		DIFF	DAZ	DAZ	DIFF	TBA	TOA	• 8'n	TIME
		DAZ	ARTS	BCAS	TBA	ARTS	BCAS	SCAN	

AZDAZ ERRU	R ANALYS	STS PROGRAM			Č	ATE . NO DA	TE PAGE	0005	
ARGET CODE:	0777	RUN BALCAS	045,11/9/76,A	SR4			047		
	SCAN	BCAS	ARTS	TOA	BCAS	ARTS	DAZ		
TIME	N8 •	TOA	TOA	DIFF	DAZ	DAL	UIFF		

2:16:56+6	3	4.930			=9+794				_
2:17: .5	4	5.120			+10+052				
2:17: 4.4	5	5+340			-10-228			-	-
2:17: 8+3	6	5+530			+1C+541		. 994		
2:17:16+2	8	5+890	5.708	.182	=10+168	•11•164	• 3 3 4		
2:17:20+1	9	6+160			-8+893				
2:17:24.1	10	6+430			-9-959				
2:17:31.9	12	7+030			-9.256				
2:17:35+8	13	7.420			-9+26/				
2717:39+8		7,970			-9+443				
12:17:47.6	16	9.220			-9-822				
2:17:55.5		10+760	·		-9.827				
2:17:59.4	19	11+680			=9+404				
2:18: 7:3	- 21	13+870			+10+003				
12:18:15+1	23	16+740			-9.59/				
15:19:53:0	- 25		16.704	3.396	-10-047	-9-944	- 285		
12:18:30+8	27	24.070	24.375	305	-10-125	• • • • • • • • • • • • • • • • • • • •			
2:18:34 .8	- 28	26+190	00.0(0	457	-10.360	-9.932	- • 428		
12:18:38.7	29	28+410	28.003	***33	-10-380	-10-020	++076		
12:18:42+6	- 30	35+750	31+285	- 404	-9.937	-10-020	•083		
12:18:46+6	31	33+120	33.726				•143		
12:13:20+4	35	35.600	30.020	404	-9.849	+10-020	•171		
12:18:54.4	33	38+130	30+020	•••090			• 236		
15:14: 5.5	35	43.300	43:227	- 577	-10-519	-10-547	• 028		
12:19:10+1	3/	48+640	47.217			•10•283	+412		
15:14:51.8	40	57+010	57.575	781	-10-706	-10-811	+105		
12:19:25.8	41	59+860	.60.641	••/81	-10.344				
12:19:29.7	42	62 • / 80			-11.497				
12:19:33.6	43	65+640			12+057				
12:19:41.5	45	71+410	77.690	- #20	-11-448	•11.338	-+110		
12:19:49+4	47	//•260	//•080		-11.492	11.250	++242		
15:16:24.3	49	83.030	87.423	409	-12.634	11.865	-•769		
12:20: 9+1	52	91+730	92+139		-11.814	-12.480	+664		
15:50:13.0	- इन	94.610	92+303	-,919	-12-250	-12-656	• 406		
2:20:17.0	54	97+490	98.409	= • 212	-15-590				
							- 865 SUM AF	SQUARES	3.038
DAZ MEAN	1:	• 051	DAZ S.D.	• 433	1/ 5		-5.435 SUM OF	SQUARES	18+117
TOA MEAN	11	320	TOA SODAT	1.015	N= 1/5	Un-			• • •

μ	
127	

		2+7+5			3*300	16	15:331 3*5
t/0++	218+2	14/+2	842**	<u>RI1+6</u>	3+870		
		3+585			0+0+4	88	15:35:21++
		5• 620			006++		G+1412E121
		686 • E			090 • 9	28	12:32:39+6
		<u> </u>			9•350	82	1213E151
		3+312			6+820	18	15:35:53+9
		3+503		· · · · · · ·	10•720	94	20# ISE151
		2.670			062.11	94	E ISEISI
		649.2			081•51	2/	
		5-428			018-21	02	9+04112121
		<u> </u>			00000		
		205 - 5			095-66	99	8-76-16-61
		07047			019497	<u>99</u>	0+/1:15+21
		16646			017-76	69	0.61116:21
	00002	210+2	C0/10	C0/+05	0+6+65	90	**FC10F121
721	800 °C	24042	972 -	307 76	010+/6	/6	**64:05:21
		916+2			#0*650	GG	15:30:41.0
		*2E • 2			019+2+	÷5	15:30:31.1
••550	5•585	5.065	£56**	£2£ *9*	046.44	23	15:30:33•7
	• • •	5 1 7 4			080 • 9 *	29	15:30:59+8
£65·*	5*373	087.1	067.5	0+6*++	0EL • L+	19	15:30:52+3
<u>sti •</u>	978*1	196+1	568.**	562*6*	00++6+	<u> </u>	12:30:21+9
∠ 89• •	7637	056+1	+12**	*9E*15	050 • 1 5	64	12:30:18+0
	+E6+I	1.66+1	<u>+/1</u>	+6Z+25	25•950	87	15:30:14-1
		• 695			044.85	94	151301 6+2
		615.2			06+•/6		15:301 5.3
181	701-5	910-2	E4E	E00+19	099-09	67	7.75.66161
	-/010	<u>176+2</u>	****	10.000	036409		/ 3L + C2+21
C77	920-5	766.6	184	104-33	066-37	07	2+67+86+61
65044	15942	946.17	000.10	92/+1/	091+1/	/6	6100162121
687.	C97+2	1/6+2	673 - CCC**	64246/	068+7/		6102162121
,		05#+2	330		009++/	CF	15:53:52:0
		015+2			065+9/	34	15:53:13+1
		649+8			060 .84	66	15:53:12.5
56**	5+103	5+00#	210**	261+08	089.64	35	15:53:11:5
968 •	904 • 1	208+1	• • 351	299 18	0+E • 18	TE	12:29: 7.3
		181+2			0G1.1E8	30	15:53: 3++
		1.536			069*98	82	15:58122*2
		<u>91+1</u>			096+88	2	9+15:58:21
		1.1307			020.02	56	1212814746
		<u>E84+1</u>			098+16	52	
		651 1			069+86	12	0.85:85:51
		740					
110	ZVQ	270	1110 1110	AAT	64J0 181		3411
<u>{</u> <u>v</u> u	2791	8115	AAT	3407	SVJU NOV	NTJS_	1707 1707
* hver 000	HING AN & TH	va	705	-72/0/11-570	PROGRAM	ISA TANA H	199722 1975
		· · · · · · · · · · · · · · · · · · ·					UNITE A VITER

<u>291•21</u> £64•9	3+535 20H 01 20048E2+	•	WAS 12 IN	272.	:•0•\$ ZVO		DAZ MEAN
	910-	0+E*E	95C * E	EII*-	EL#*\$	1+360	+II + EE: +E
	522 •	046.6	590 • 4	1+126	4E4 *	0991	111 9+12:46
		<u>920*E</u>	962 • E		<u><u> </u></u>	089•1	801 6.6 :46
	201 • T	5+900	2E0 • #	• 005	866 • 1	5+000	33:20•5 103
	068•	5*988	828.5	650**	5.129	010+2	33:46+4 105
			6E++E 678+F		<u>" + Ç C</u>	5+520	66 9• † £;££
	CCC		EE7*E	091	0//•2	014+2	23:56 8 92 23:56 8 92
<u> </u>			3+186			5•760	+6 0•91:EE
	DIFF	ZYO	ZYO	DIFF	STHA Aðt	2438 AGT	• 0N JMIT
	LE + bygE 0001			+8S	¥ *92/6/11 * 5+0	BUN 91CAS	DET CODE: 0777

,

.

F-129

MIGET COUL: UNIX DAZ DAZ 11ME N0: T0A DAZ DAZ 2139120:5 2 10.220 11.71U 12.972 -1.632 2139120:5 2 10.720 10.72 0.12 0.12 0.12 2139120:5 2 10.720 10.972 -1.632 2.646 3.164 -522 2139120:5 3 10.71U 12.972 -6.632 2.646 3.164 -522 2139120:5 3 13.740 13.975 5.911 2.752 2.988 2139120:5 7 19.740 19.916 -1.766 -522 2139120:4 9 2.5040 17.119 4.921 3.516 -552 2139120:2 7 10 17.119 4.921 3.516 -556 2139120:2 7 10 4.921 3.516 -556 2139120:2 12 2.7640 17.119 4.921 3.516 -556 2139159:9 12 2.7640 17.119 4.921 3.516 -556 2139159:9 12 2.7640 17.119 4.921 3.516 -576 2100115:7 16 43.410 3.521	C VUAL ERROR		- 045.11 /0/76.	ACDA	•	,		
TIME SCAN BLAS NRIS DIFF DLAS NRIS DIFF DLAS NRIS DIFF DLAS NRIS DIFF DLAS DLAS <thdlas< th=""> DLAS DLAS <thd< th=""><th>ANGET COUL: L</th><th>AVI KUN TOTIC</th><th></th><th></th><th></th><th>2001</th><th>747</th><th></th></thd<></thdlas<>	ANGET COUL: L	AVI KUN TOTIC				2001	747	
TIME N0: TeA DAZ DAZ <thda< th=""> <thda< th=""></thda<></thda<>	32		ARTS		2430			
2139:20:5 2 10.220 3:573 5:53 3:663 5:60 5:52 2139:20:5 2 13.340 13.373 5:911 2:642 3:643 5:52 2139:20:5 3 13.340 13.373 5:672 3:642 3:642 3:642 2139:20:5 7 13.340 13.373 5:642 3:642 3:642 3:642 2139:20:5 7 19.340 19.16 0.176 3:642 3:642 3:642 2139:20:1 7 19.916 0.176 3:642 3:642 3:642 3:645 2139:40:2 7 19.916 0.1719 4:921 3:516 3:54 2:55 2139:59:1 10 27:80 3:516 3:516 3:56 5:56 2139:59:1 10 27:80 3:516 3:516 5:56 2139:59:1 10 27:80 3:516 3:516 5:56 2139:59:1 10 27:540 3:516 3:516 5:57 2139:59:1 10 2:153 2:537 2:94 3:656 2100:27:4 19 5:154 3:594 -574 -573 2100:27:4 19 5:154 3:554	TIME	TAL TAL	TRA	DIFF	DAZ	DAZ	4410	
2139120-5 2 10.0220 3.064 3.664					15.00			
2139:205 2 10.020 10.220 3.065 3.604 -522 2139:205 3 11.710 12.972 3.1085 3.164 -522 2139:2016 4 13.972 -632 2.642 3.164 -522 2139:2016 13.970 13.975 -632 2.642 3.164 -522 2139:2016 13.9740 13.975 -632 2.642 2.945 2139:40.2 7 19.916 17.119 4.921 2.642 2.946 2139:40.2 7 19.916 17.119 4.921 3.616 2.946 2139:40.1 9 24.600 27.540 841 3.516 000 2139:59.9 12 27.930 27.541 845 3.516 000 2139:59.9 12 27.930 23.253 3.516 3.516 000 21401:57.7 16 4.3.410 45.34 3.516 050 21401:27.4 19 51.6 3.604 764 21401:27.7 16 43.517 3.604 764 21401:27.7 19 5.153 2.637 2.634 21401:27.4 19 5.634 3.604 764				I				
213912415 3 11111 12.978 -1648 3.164 -522 213912814 4 13.379 5.131 2.6482 3.164 -522 213914012 7 19.740 19.916 -175 5.572 5.512 2.988 -654 213914012 7 19.740 19.916 -175 2.922 3.642 2.988 -654 21391401 8 5 5.570 5.510 3.154 -542 2.988 -654 213915919 10 27.000 27.540 981 3.656 3.154 -3.45 213915919 12 27.000 23.221 841 3.516 3.516 576 213915919 17 14 37.420 3.428 3.154 576 214013918 17 14 3.653 2.414 3.604 756 214013918 17 19 3.614 3.604 756 214013918 23 51.940 3.614 3.604 756 214013918 23 61.690 5.153 2.637 2.844 3.604 214013918 23 61.613 2.637 2.8140 3.604 21401391	2139;20+5	2 10.220	1		3•669			
2139128+4 4 13-340 13-972 6422 3-1642 3-1642 3-164 0222 21391321-3 5 5 5111 5.911 3-642 3-076 -154 21391321-3 5 19-916 -1154 -1154 -154 -154 21391481 6 22:040 17-119 921 3-510 3-164 2-96 21391481 6 22:040 17-119 921 3-516 -056 21391481 6 24:500 27:640 3-154 3-516 -050 21391481 6 24:500 27:640 3-516 3-516 -050 21391481 6 27:640 3-516 3-516 -000 21391481 6 27:640 3-516 3-516 -000 21391481 1 4-31410 4-3420 -1644 3-604 21401597 1 4-315 -653 2-934 3-516 -050 21401597 1 4-3164 -653 2-634 3-604 -056 21401597 1 4-315 -653 2-634 -175 -175 21401597 2 2-133 2-634 3-604	<u> </u>		12:348	0F9**	3-082	2000		
C139:12:13 5 19:740 5:379 5:911 2:722 3:076 0:154 2139:13:13 5 19:740 19:916 0:17:119 4:921 3:642 2:988 6654 2139:14:1 6 2:000 17:119 4:921 3:642 2:988 6654 2139:14:1 6 2:000 17:119 4:921 3:616 3:164 1346 2139:15:1 10 27:080 27:640 7:641 3:428 3:164 654 2139:15:1 10 27:090 33.221 8411 3:516 3:516 3:564 2101:15:7 14 37:00 3:658 3:651 3:694 -:576 2101:15:7 1 43:410 5:323 2:537 2:840 3:604 -:756 2100:23:3 2 5:153 2:537 2:840 3:604 -:756 -:175 2100:33:3 22 60:690 54:153 2:537 2:840 3:604 -:756 2100:33:3 22 63:400 5:637 2:840 3:604 -:756 -:757 2100:33:3 22 63:0139:3 2:810 3:604 -:757 2:637 2:637 2		13-340	13-972	632	2+642	3,164	225	
2:39:42.4 7 19-70 19-916 176 3-642 2-986 -654 2:39:42.1 9 24-900 17-119 4-921 3-156 2-986 -654 2:39:45.1 9 24-900 17-119 4-921 3-516 3-154 -346 2:39:54.1 9 24-900 27-50 27-50 3-516 3-516 -346 2:39:54.1 10 27-90 27-50 3-521 3-516 -300 2:39:59.2 14 3-516 3-516 -000 2:39:59.3 12 27-800 3-522 3-516 -000 2:401:59.7 16 43-410 5-537 2-934 3-501 -976 2:401:59.7 19 51-940 5-537 2-840 3-604 -764 2:401:59.7 2-19 2-631 2-631 2-634 -175 2:401:49.8 2-730 2-631 2-634 -175 2:401:49.8 2-105 2-631 2-634 -175 2:401:49.8 2-104 2-634 2-175 -175 2:401:49.8 0 2-634 2-644 3-164 2:401:49.8 2-640 2-634 2-175 -175<	C+33150+4				CCD C.	. 3.076	••154	
2:39:40.2 7 19.40 19.916 176 Job (2 - 200) 17.119 4.921 Job (2 - 200)	2:39:32.3	062001 6	01000					
2139144:1 8 2:5040 17:119 4:921 3:510 3:16* -140 2139148:1 9 2:4:500 27:540 -:560 3:428 3:516 1:54 2139159:9 12 27:640 -:560 3:428 3:516 1:54 2139159:9 12 27:630 27:540 -:560 3:416 7:54 2139159:9 12 27:630 3:428 3:516 3:50 1:56 2139159:0 15 43:400 3:628 3:516 -:000 21401391 19 51:940 45:37 2:537 2:494 3:504 -:764 214013913 21 5:537 2:440 3:604 -:764 -:764 214013913 21 5:637 2:440 3:604 -:764 214013913 21 5:637 2:440 3:604 -:764 214013912 23 63:530 5:537 2:440 3:604 -:764 214013912 23 63:530 5:537 2:440 3:604 -:764 214013912 23 63:530 5:537 2:440 3:604 -:764 214013912 23 63:530 5:537 2:440 <td>2:39:40.2</td> <td>7 19+740</td> <td>19.916</td> <td>170</td> <td>2+0+2</td> <td>21200</td> <td></td> <td></td>	2:39:40.2	7 19+740	19.916	170	2+0+2	21200		
2139148-1 9 24-500 27-64U 56U 3-686 3-164 1264 2139148-1 10 27-030 23-221 841 3-516 1264 2139158-1 12 27-030 23-221 841 3-516 1264 2139158-1 12 27-030 23-221 841 3-516 1264 2140139-2 16 43-410 9-3422 892 3-115 3-691 576 2140139-3 21 5-194 3-604 756 756 2140139-2 22 2-144 3-604 756 2140139-2 23 2-137 2-144 3-604 756 2140139-2 23 2-137 2-149 3-604 756 2140139-2 23 60-46 3-604 756 175 2140139-2 23 60-46 3-604 175 175 2140139-2 23 2-147 2-637 2-163 2-164 2140139-2 23 60-46 175 175 2140139-2 23 2-144 3-644 -175 2140139-2 23 0.144 0.1044 -175 2140139-3	2120144.1	22.040	17.119	126**	019•E	3.164		
2139:52:1 10 27:640 -:560 3:428 3:164 254 2139:59:9 12 37:300 33.221 -:841 3.516 3.516 0000 2100:15:8 12 32:300 33.221 -:841 3.516 3.504 250 2100:15:8 17 43:410 3.551 3.551 -:000 3.553 2100:15:8 17 43:410 3.553 2:403 3.604 -:764 2100:25:4 19 51:940 48:153 2.5537 2:414 3.604 -:764 2100:35:3 22 60:690 58:153 2.5537 2:414 3.604 -:764 2100:35:3 22 63:430 5.537 2:414 3.604 -:764 2100:35:3 22 5:414 3.604 -:764 -:764 2100:35:3 23 2:637 2:637 2:637 2:637 2100:35:2 23:50 2:637 2:637 2:637 2:634 2100:35:2 23 2:634 3.604 -:764 2100:35:2 2:637 2:634 2:610 -:175 2100:35:2 2:634 5.634 3.604 -:754 210:41:4 <t< td=""><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>•</td><td></td><td>3 • 686</td><td></td><td></td><td></td></t<>		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•		3 • 686			
2:39:52:1 10 2:000 33.221 841 3.516 3.000 2:30:7:8 12 2:300 33.221 841 3.556 3.516 000 2:30:15:7 16 43.410 53.221 841 3.556 3.551 000 2:40:15:7 16 43.410 53.221 841 3.556 3.551 576 2:40:15:7 16 43.410 55.37 2.594 3.604 756 2:40:27:4 19 51.53 2.5537 2.514 3.604 756 2:40:39:3 21 2.537 2.537 2.544 3.604 756 2:40:49:2 2 2.537 2.537 2.544 3.604 756 2:40:49:2 2 2.537 2.544 3.604 756 2:40:49:2 2.537 2.537 2.557 2.551 175 2:40:49:2 2.537 2.537 2.551 175 175 2:40:49:2 2.537 2.557 2.551 175 175 2:40:49:2 0.145 0.343 504 0.756 2.553 2:40:1 145 0.452 0.504 175 2:40:1 <					HCHYP	40101	+564	
2:39:59.9 12 32.380 33.221 841 3.516 4.310 2:401:7+6 14 3.430 33.221 841 3.656 4.310 2:401:5+6 17 4.310 34.532 3.651 3.654 576 2:401:5+6 17 51.590 5.537 2.4934 3.604 764 2:401:35+2 2.537 2.637 2.637 2.614 3.604 764 2:401:35+2 2.6537 2.637 2.614 3.604 764 2:401:35+2 2.6537 2.637 2.614 3.604 764 2:401:35+2 2.6133 2.6537 2.614 3.604 764 2:401:35+2 2.613 2.6537 2.614 3.604 764 2:401:45+2 2.651 2.6537 2.614 3.604 764 2:401:45+2 2.614 3.604 764 3.604 764 2:401:45+2 2.651 2.6537 2.614 3.604 764 2:401:45+2 2.651 2.651 2.651 2.654 3.604 2:401:45+1 2.651 2.651 2.653 2.654 3.604 2:401:45+1 2.651 2.651 <td< td=""><td>112616612</td><td>090•/2 01</td><td>0+0+12</td><td></td><td></td><td></td><td></td><td></td></td<>	112616612	090•/2 01	0+0+12					
2:40:15-7 14 37-850 3-252 3-252 2:40:15-7 16 43-410 3-592 3-153 2:40:15-6 17 43-410 5-537 3-153 2:40:15-6 2: 3-591 556 2:40:15-7 16 43-410 5-537 2-994 2:40:15-6 2: 2-194 3-604 756 2:40:19-6 2: 2-144 3-604 756 2:40:19-7 2: 2-144 3-604 756 2:40:19-7 2: 2: 2-149 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 3-604 756 2:40:19-7 2: 2: 2: 2: 2: 3-604 2:40:19-7 2: 2: <	0.00.00.0	12 32,380	33.221	841	34516	010.45	000-	
2:4015/7 14 43.410 3658 3.658 3.658 3.658 2:4015/7 17 45.250 45.242 692 3.115 3.691 576 2:4013915 17 51.940 45.237 2.537 2.714 3.604 764 2:4013915 21 51.940 58.153 2.537 2.714 3.604 764 2:4013915 22 60.690 58.153 2.537 2.744 3.604 764 2:4013912 23 60.690 58.153 2.537 2.614 3.604 764 2:4014912 23 60.690 58.153 2.5537 2.614 3.604 764 2:4014912 23 60.490 5.615 2.657 2.614 3.604 764 2:4014912 23 2.614 3.604 775 2.175 764 2:4014912 23 0.814 3.604 775 2.175 764 2:4014912 23 0.814 3.604 775 2.175 764 2:4014912 2.614 3.604 775 2.6343 504 0.775 2:4014913 175 0.343 504 0.343 504 0.					30.00			
2:40:15.7 16 43:410 45:342 692 3:091 576 2:40:15.4 17 46:290 45:342 692 2:994 3:004 76 2:40:131.3 21 5:37 2:491 3:004 76 2:40:1351.3 21 5:494 3:004 76 2:40:1351.3 21 2:537 2:484 3:604 764 2:40:1351.3 2:537 2:637 2:637 2:637 2:612 2:40:1391.3 22 60:690 58:153 2:537 2:637 2:612 2:40:1391.3 22 63:490 3:604 756 175 2:40:1391.2 23 2:637 2:637 2:637 2:612 2:40:1491.2 23 2:612 487 2:637 2:612 2:40:1491 63 462 N= 10 SUM= 9:343 SUM BF SULARES* 68 744 MEAN 145 74.02 N= 10 SUM= 9:343 SUM BF SULARES* 68	2:40: 7.8	14 3/•890						
Zitorijsta 17 45:250 45:242 -:552 3:115 3:051 -:0.0 Zitori35:3 2: 51:340 45:23 Z:37 2:340 3:004 -:764 Zitori35:3 2: 51:340 5:537 Z:340 3:004 -:764 Zitori35:3 2: 2:537 Z:340 3:004 -:764 Zitori35:3 2: 2:537 Z:340 2:612 2:764 Zitori35:2 2: 2:537 Z:840 3:604 -:764 Zitori35:2 2: 2:637 Z:840 3:604 -:764 Zitori35:2 2: 2:637 Z:840 3:604 -:764 Zitori35:2 2: 2:637 Z:840 3:604 -:764 Zitori4:2 2: 2:637 Z:810 2:637 Z:810 Zitori4:2 2: 0:04 0:044 5:046 Z:256 Zitori4:2 2: 0:04 0:044 0:046 Z:256 Zitori4:2 2: 0:04 0:044 0:046 Z:256 Zitori4:2 2: 0:04 0:046 0:046 Z:256 Zitori4:2 2: 0:04 0:046 0:046	2:40:15.7	16 43+410			2.010			
2:40:27.4 19 51.940 2:40:3913 2: 50 58.153 2.537 2.14 3.604764 2:40:3913 2: 60.605 58.153 2.537 2.14 3.604764 2:40:4912 2: 601 2:637 2.537 2.657 2.6512175 2:40:4912 2:61 2:637 2.65121552 2:637 2.65121552 6.8 2:40:4912 2:637 2.651 2:657 2:657 2:657 2:657 2:65121649 5.500ARES* 6.8	2:40:1945	17 46+250	46.942	- + 692	SILLE	3.091	0/0	
Z:0013013 2: 577710 58.153 2.537 2:714 3.604764 Z:00139:3 22 60.690 58.153 2.537 2.840 3.604764 Z:00139:3 22 60.690 58.153 2.537 2.637 2.612175 Z:01495E 23 63.537 2.612175 DAZ HEANI145 DAZ S.D.: 2.570 N= 10 SUM= -1.449 SUM 0F SUUARES= 68 TAA HEANI145 DAZ S.D.: 2.570 N= 10 SUM= 9.343 SUM 0F SUUARES= 68		10 E1 040			4994			
Z:0013913 ZI 00.600 58.153 Z.537 Z.640 3.604764 Z:0013912 Z2 60.600 58.153 Z.537 Z.637 Z.612175 Z:0014912 E3 63:550 54:037467 Z.657 Z.6512175 Z:001491 2.6512 N. 10 SUM: -1.649 SUM OF SUUARES: 68 MAX HEANI145 DAX S-D.1 2.570 N. 10 SUM: 9.343 SUM OF SUUARES: 68					A77-5			
2:40:39:3 22 60:690 56:153 2:53/ 2:690 3:604 3:604 2:617 2:617 2:617 2:617 2:617 2:612175 2:614 2:01:45 2:615 2:6145 2:615 2:	2:40:3313	n1/•/6 12				402 0	476	
2:40:49:6 2:637 2:61 0:1/3 2:40:49:6 63:550 64:037 63:550 63:550 DAL HEAN: -1:45 DAZ SOD: 2:570 N= 10 SUM= 9:343 SUM OF SUUARES= 68: DAL HEAN: -9:343 SUM OF SUUARES= 68: 10 SUM= 9:343 SUM OF SUUARES= 68:	2:40:39.3	22 60+690	58.153	156+5	049 • 2	1000		
DAZ HEAN:	2.00.43.2	<u> 63 63 63 650</u>	64+037	*** 83	2 637	21912	C/1	
DAZ HEANI145 DAZ S+D+1 +462 N= 10 SUM= -1.649 SUH BF SUUARES= 2 Taa heani -9-343 SUH BF SUUARES= 68								
DAZ HEANI145 DAZ S-D+: -462 N= 10 SUM= -1-449 SUM OF SUUARESE 64 TAA MTAN: -934 TOA S-D+: 2-570 N= 10 SUM= 9-343 SUM OF SQUARESE 648								
TAA MFAN: 934 TBA S-D+: 2-570 N= 10 SUM= 9-343 SUT OF SUCARES- 00	DAZ HEAN!		1.0.2 ZAD	204.	HOS OI =N		-J. +++ SUR DF SUUAKESE	51136 57142
	TAA MFAN:	459.	T0A S.D.:	2.570	N= 10 SUM	4	9+343 201 01 0004400-	24-02

F-130

•

They are independent for the two aircraft. Culbertson has established, by comparing ARTS data with phototheodolite data for a pair of aircraft being tracked by both, that the azimuth errors for two aircraft also are independent. If all the different errors are assumed independent, then the above formula for $\sigma_{R_s}^2$ reduces to

$$\begin{split} \sigma_{\mathrm{R}_{s}}^{2} &= \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \mathrm{R}_{1}}\right)^{2} \sigma_{\mathrm{R}_{1}}^{2} + \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \mathrm{R}_{2}}\right)^{2} \sigma_{\mathrm{R}_{2}}^{2} \\ &+ \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \phi_{1}}\right)^{2} \sigma_{\phi_{1}}^{2} + \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \phi_{2}}\right)^{2} \sigma_{\phi_{2}}^{2} \\ &+ \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \mathrm{H}_{1}}\right)^{2} \sigma_{\mathrm{H}_{1}}^{2} + \left(\frac{\partial - \mathrm{R}_{s}}{\partial - \mathrm{H}_{2}}\right)^{2} \sigma_{\mathrm{H}_{2}}^{2} \end{split}$$

Since the measurement errors are statistically the same for both aircraft, this further reduces to

$$\begin{split} \sigma_{\mathrm{R}_{\mathrm{S}}}^{2} &= \left[\left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \mathrm{R}_{1}} \right)^{2} + \left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \mathrm{R}_{2}} \right)^{2} \right] \sigma_{\mathrm{R}}^{2} \\ &+ \left[\left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \phi_{1}} \right)^{2} + \left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \phi_{2}} \right)^{2} \right] \sigma_{\phi}^{2} \\ &+ \left[\left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \mathrm{H}_{1}} \right)^{2} + \left(\frac{\partial - \mathrm{R}_{\mathrm{S}}}{\partial - \phi_{2}} \right)^{2} \right] \sigma_{\mathrm{H}}^{2} \end{split}$$

A similar expression holds for σ_{θ}^2 . The values for $\sigma_R^{}, \sigma_{\phi}^{}$ and $\sigma_H^{}$ are

 $\sigma_{\rm R}$ = .018 n.mi. σ_{ϕ} = .25 degrees $\sigma_{\rm H}$ = 30 ft

Approximate expressions for $\sigma_{R_S}^2$ and σ_{θ}^2 are shown in Figures G-1 and G-2.

In plotting the values R_s and θ obtained from the ARTS measurements, vertical lines were drawn about the computed values to show (approximately) the 90% confidence intervals for these values. These lines extend 1.65 σ above and below the computed value. Each such line is to be interpreted as the range within which the actual value of R_s or θ lies with a probability of 90%, given that the ARTS observations are the noise-corrupted value that were actually obtained.

It may be noted that the size of the confidence intervals is a function of the aircraft configurations. For instance, the confidence interval for θ is small when the aircraft are far apart and large when they are close together. This is readily explained. There is some uncertainty about the precise location of each aircraft. When the aircraft are far apart, relatively small displacements of either do not much change the direction toward the other. When the aircraft are close together, small displacements perpendicular to the line separating them can cause significant changes in bearing angle.

G-4

The following should be observed in interpreting the error bars: a) The + 1.65 σ range corresponds to the 90% confidence interval for normally distributed error. The assumption of normality is not really justified here. Therefore, the error bars serve more as a qualitative indicator of accuracy than as precise indications of the size of the confidence interval. b) The errors considered are the errors in "good" ARTS measurements, i.e., the errors in precisely defining the location of a clear target in the absence of garble effects, "split target" errors, and other effects which cause either a wrong or an incomplete group of transponder replies to be identified as an ARTS target report. Such effects in general will cause wild points in the ARTS reply sequence. The probability that such wild points will occur and the magnitude of the resulting error have not been taken into account at all in constructing the error bars.

G-5

*
$$\sigma_{R_s}^2 \approx \cos^2 \psi \ (\sqrt{2}\sigma_R)^2 \ + \sin^2 \psi \{ (R_M \sigma_{A12})^2 \ + \left(\frac{R_M}{R_m}\right) \ \sin^2 \frac{\Delta A}{2} \ (\sqrt{2} \ \sigma_R \)^2 \}$$

where $\cos \psi \approx |R_2 - R_1| / R_s$, $0^\circ \le \psi \le 90^\circ$
 $R_M = \max \ (R_2, R_1)$, $R_m = \min \ (R_2, R_1)$
 $\sigma_{A12}^2 = 2(1 - \rho_{A12}) \ \sigma_A^2 = differential azimuth variance$
 $\sigma_A^2 = azimuth variance$
 $\sigma_R^2 = slant range variance$

APPROXIMATION FORMULA FOR THE VARIANCE OF RANGE SEPARATION (R_s); $|\Delta A| \le \! 18\,^\circ$

FIGURE G-1: EXPRESSION FOR σ_R^2 [Source K. Culbertson]

$$\begin{array}{rl} & \underset{AND \ |R_{2},R_{1}\rangle \geq NMI \\ \underline{AND \ |R_{2}-R_{1}| \leq 5 \ NMI} \\ \hline & \underset{R_{2}}{AND \ |R_{2}-R_{1}| \leq 5 \ NMI} \\ & \ast \ \sigma_{R_{5}}^{2} \approx \cos^{2} \psi \ (\sqrt{2} \ \sigma_{R})^{2} + \sin^{2} \psi \ (R_{M} \sigma_{A12})^{2} \\ & \ast \ \sigma_{\theta}^{2} \approx \sigma_{A}^{2} + \frac{1}{R_{5}^{2}} \left\{ \cos^{2} \psi \ (R_{M} \sigma_{A12})^{2} + \sin^{2} \psi \ (\sqrt{2} \ \sigma_{R})^{2} \right\} \\ & \text{where } \cos \psi = |R_{2}-R_{1}|/R_{5}, \ |A_{2}-A_{1}| \leq 18^{\circ} \\ & R_{M} = \max \ (R_{2},R_{1}) \\ & \sigma_{A}^{2} = \text{azimuth variance} \\ & \sigma_{A12}^{2} \ 2(1 - \rho_{A12}) \ \sigma_{A}^{2} \\ & \rho_{A12} = \text{ correlation coefficient of } A_{2}, A_{1} \text{ errors (=0)} \\ & \sigma_{R}^{2} = \text{ slant range variance} \end{array}$$

$$\frac{\text{For } \psi = 0^{\circ}}{\sigma_{R_{s}}^{2}} \approx (\sqrt{2} \sigma_{R})^{2}$$

$$\sigma_{\theta}^{2} \approx \sigma_{A}^{2} + \frac{(R_{M}\sigma_{A12})^{2}}{R_{s}^{2}}$$

$$\frac{\text{For } \psi = 90^{\circ}}{\sigma_{R_{s}}^{2}} \text{ (Azimuth Case: } R_{2}=R_{1}, 0^{\circ} < |A_{2}-A_{1}| \le 18^{\circ})$$

$$\sigma_{R_{s}}^{2} \frac{(R_{M}\sigma_{A12})^{2}}{\sigma_{\theta}^{2}} \approx \sigma_{A}^{2} + \frac{(\sqrt{2}\sigma_{R})^{2}}{R_{s}^{2}}$$

APPROXIMATION FORMULAS FOR VARIANCE OF RANGE SEPARATION (R_s) AND BEARING ANGLE (θ) WHEN MAX (R_2, R_1) ≥ 20 NMI AND $|R_2-R_1|$ ≤ 5 NMI

FIGURE G-2.
$$\sigma_{R_s}^2$$
 AND σ_{θ}^2
[Source K. Culbertson]

•

G-7/G-8

REFERENCES

- TSC Technical Memorandum No. 1, "Tests and Analysis of JTIDS Interference with BCAS," Herbert Glynn and Juris Raudseps, January 1977. (On file DOT/TSC, Cambridge MA)
- FAA-RD-78-2, "Airborne Antennas Diversity Study, Beacon Collision Avoidance System (BCAS)", John H. Kramer, April 1978.
- FAA-RD-78-34, "Alternative Concepts for Determining Target Positions", Juris G. Raudseps, M. D. Menn, and J. Vilcans, July 1978.
- 4. Natrella, M. G., "Experimental Statistics", National Bureau of Standards Handbook 91, August 1963.
 August 1963.

220 Copies